Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/743 solar array reference fix #885

Merged
merged 3 commits into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/Support/bskReleaseNotes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@ Version |release|
support directly Python 3.11, and Basilisk does not support Python 3.13 yet.
- :ref:`simIncludeGravBody` set the moon equatorial radius in km, not meters.
- fixed ``subMRP()`` routine in :ref:`RigidBodyKinematics`
- Updated :ref:`solarArrayReference` to correct the wrong assumption of reflective solar arrays for momentum management pointing mode.


Version 2.5.0 (Sept. 30, 2024)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
#

import pytest
import os, inspect, random
import math
import numpy as np


Expand Down Expand Up @@ -65,22 +65,6 @@ def computeSunReferenceAngle(sigma_RN, rHat_SB_N, a1Hat_B, a2Hat_B, theta0):

return theta

def computeSrpReferenceAngle(sHat, hHat, thetaSunR):

s2 = sHat[1]
s3 = sHat[2]
h2 = hHat[1]
h3 = hHat[2]
Delta = 8 * ((s2*h2)**2 + (s3*h3)**2 + (s2*h3)**2 + (s3*h2)**2) + (s2*h2 + s3*h3)**2
t = np.arctan( (3*(s3*h3 - s2*h2) - Delta**0.5) / (4*s2*h3 + 2*s3*h2) )
yHat = np.array([0.0, np.cos(t), np.sin(t)])
if np.dot(sHat, yHat) < 0:
yHat = -1 * yHat
theta = np.arctan2(yHat[2], yHat[1])
f = np.dot(hHat, yHat) * (np.dot(sHat, yHat))**2

return thetaSunR - f * (theta - thetaSunR)

# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
Expand Down Expand Up @@ -169,6 +153,9 @@ def solarArrayRotationTestFunction(show_plots, rHat_SB_N, sigma_BN, sigma_RN, at
solarArray.r_AB_B = r_AB_B
solarArray.pointingMode = pointingMode
solarArray.attitudeFrame = attitudeFrame
solarArray.ThetaMax = np.pi/2
solarArray.sigma = 1
solarArray.n = 1

# Create input attitude navigation message
natAttInMsgData = messaging.NavAttMsgPayload()
Expand Down Expand Up @@ -247,13 +234,25 @@ def solarArrayRotationTestFunction(show_plots, rHat_SB_N, sigma_BN, sigma_RN, at
RB = np.matmul(RN, BN.transpose())
sHat = np.matmul(RB, rHat_SB_B)
H_R = np.matmul(RB, H_B)
hHat = np.cross(r_AB_B, H_R)
else:
sHat = rHat_SB_B
hHat = np.cross(r_AB_B, H_B)
hHat = hHat / np.linalg.norm(hHat)
H_R = H_B

F_R = np.cross(sHat, r_AB_B)
f = np.dot(F_R, H_R)

if f > 0:
thetaR = thetaSunR + 2 * solarArray.ThetaMax / np.pi * np.arctan(solarArray.sigma * f**(solarArray.n))
else:
thetaR = thetaSunR

# If the angle difference is greater than PI, adjust it to the range [-PI, PI]
thetaDiff = math.fmod(thetaR-thetaC, 2 * np.pi)

thetaR = computeSrpReferenceAngle(sHat, hHat, thetaSunR)
if thetaDiff > np.pi:
thetaR -= 2*np.pi
elif thetaDiff < -np.pi:
thetaR += 2*np.pi

# compare the module results to the truth values
if not unitTestSupport.isDoubleEqual(dataLog.theta[0], thetaR, accuracy):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -182,12 +182,14 @@ void Update_solarArrayReference(solarArrayReferenceConfig *configData, uint64_t
m33MultV3(RB, hs_B, hs_R);
}

double thetaSrpR; // reference solar array angle that maximizes SRP dumping torque
double L_R[3]; // direction of the SRP torque
v3Cross(rHat_SB_R, r_AC_B, L_R);
double f;
computeSrpArrayNormal(a1Hat_B, a2Hat_B, a3Hat_B, rHat_SB_R, r_AC_B, hs_R, &thetaSrpR, &f);
f = v3Dot(L_R, hs_R);

// bias the reference angle towards thetaSrpR more if there is more potential to dump momentum (f = -1)
thetaR = thetaSunR - f * (thetaSrpR - thetaSunR);
if (f > 0) {
thetaR += 2 * configData->ThetaMax / M_PI * atan(configData->sigma * pow(f, configData->n));
}
}

// always make the absolute difference |thetaR-thetaC| smaller than 2*pi
Expand Down Expand Up @@ -218,57 +220,3 @@ void Update_solarArrayReference(solarArrayReferenceConfig *configData, uint64_t
/* write output message */
HingedRigidBodyMsg_C_write(&hingedRigidBodyRefOut, &configData->hingedRigidBodyRefOutMsg, moduleID, callTime);
}

/*! This method computes the reference angle for the arrays that maximizes SRP torque in the direction
* opposite to current RW momentum (thetaSrpR). It also outputs a coefficient f that is proportional to the projection
* of the SRP torque along the RW net momentum.
@return void
*/
void computeSrpArrayNormal(double a1Hat_B[3], double a2Hat_B[3], double a3Hat_B[3],
double sHat_R[3], double r_B[3], double H_B[3], double *thetaR, double *f)
{
/*! Define map between body frame and array frame A */
double BA[3][3]; // DCM mapping between body frame and array frame
for (int i=0; i<3; ++i) {
BA[i][0] = a1Hat_B[i];
BA[i][1] = a2Hat_B[i];
BA[i][2] = a3Hat_B[i];
}

/*! Map vectors to array frame A */
double sHat_A[3]; // Sun heading in array frame
v3tMultM33(sHat_R, BA, sHat_A);
double hHat_B[3]; // h vector (see documentation) in body frame
v3Cross(r_B, H_B, hHat_B);
v3Normalize(hHat_B, hHat_B);
double hHat_A[3]; // h vector (see documentation) in array frame
v3tMultM33(hHat_B, BA, hHat_A);

/*! Define vector components in the local x-y plane */
double s2 = sHat_A[1];
double s3 = sHat_A[2];
double h2 = hHat_A[1];
double h3 = hHat_A[2];

// Discriminant of characteristic equation
double Delta = 8 * (pow(s2*h2, 2) + pow(s3*h3, 2) + pow(s2*h3, 2) + pow(s3*h2, 2)) + pow(s2*h2+s3*h3, 2);

// Solution that produces SRP torque opposite to current RW momentum
double t = atan( (3*(s3*h3 - s2*h2) - pow(Delta, 0.5)) / (4*s2*h3 + 2*s3*h2) );

// SA normal direction to maximize momentum dumping
double a2SrpHat_A[3] = {0.0, cos(t), sin(t)};

// Choose normal direction that is also power-positive
double dotS = v3Dot(sHat_A, a2SrpHat_A);
if (dotS < 0) {
v3Scale(-1, a2SrpHat_A, a2SrpHat_A);
}

double theta = atan2(a2SrpHat_A[2], a2SrpHat_A[1]);
double fVal = dotS * dotS * v3Dot(hHat_A, a2SrpHat_A);

// Return the corresponding solar array reference angle and momentum dumping coefficient
*thetaR = theta;
*f = fVal;
}
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,14 @@ typedef enum pointingMode{
/*! @brief Top level structure for the sub-module routines. */
typedef struct {

/* declare these user-defined quantities */
/*! declare these user-defined quantities */
double a1Hat_B[3]; //!< solar array drive axis in body frame coordinates
double a2Hat_B[3]; //!< solar array surface normal at zero rotation
AttitudeFrame attitudeFrame; //!< attitudeFrame = 1: compute theta reference based on body frame instead of reference frame
double r_AB_B[3]; //!< location of the array center of pressure in body frame coordinates
double ThetaMax; //!< [rad] maximum deflection angle allowed in momentum management mode
double sigma; //!< [-] gain of the momentum management control law
double n; //!< [-] design parameter of the momentum management control law

/*! declare these variables for internal computations */
int count; //!< counter variable for finite differences
Expand Down Expand Up @@ -77,9 +80,6 @@ extern "C" {
void Reset_solarArrayReference(solarArrayReferenceConfig *configData, uint64_t callTime, int64_t moduleID);
void Update_solarArrayReference(solarArrayReferenceConfig *configData, uint64_t callTime, int64_t moduleID);

void computeSrpArrayNormal(double a1Hat_B[3], double a2Hat_B[3], double a3Hat_B[3],
double sHat_R[3], double r_B[3], double H_B[3], double *thetaR, double *f);

#ifdef __cplusplus
}
#endif
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,36 +73,26 @@ and then normalizing to obtain :math:`{}^\mathcal{R}\boldsymbol{\hat{a}}_2`. The
\theta_{\text{Sun,}R} = \arccos ({}^\mathcal{B}\boldsymbol{\hat{a}}_2 \cdot {}^\mathcal{R}\boldsymbol{\hat{a}}_2).


Maximum Momentum Dumping
Momentum Dumping
+++++++++++++++++++++++++++
In this pointing mode, the reference angle is computed in order to leverage solar radiation pressure (SRP) to produce a torque whose component in the opposite direction to the local net reaction wheel momentum (:math:`\boldsymbol{H}`) is maximum. Because the array can only rotate about the :math:`\boldsymbol{\hat{a}}_1` axis, the desired solar array normal :math:`\boldsymbol{\hat{y}}` can be expressed as follows, in the solar array frame :math:`\mathcal{A}`:
In this pointing mode, the reference angle is computed in order to leverage solar radiation pressure (SRP) to produce a torque on the spacecraft opposing the local net reaction wheel momentum (:math:`\boldsymbol{H}`). This functionality applies to a set of two rotating solar arrays whose rotation axes are opposite to one another, and it consists in articulating the two arrays differentially in order to generate a net SRP torque.

.. math::
{}^\mathcal{A}\boldsymbol{\hat{y}} = \{0, \cos t, \sin t \}^T.

The dot product between the solar array torque and the net wheel momentum is the function to minimize:
With respect to a ''zero rotation'' configuration, where zero rotation consists in having the power-generating surface of the array directly facing the Sun, the desire is to drive one of the two arrays at an offset inclination angle :math:`\theta` with respect to the Sun direction. This offset is defined as:

.. math::
f(t) = \boldsymbol{L} \cdot \boldsymbol{H} = (\boldsymbol{\hat{s}} \cdot \boldsymbol{\hat{y}})^2 (\boldsymbol{r} \times (-\boldsymbol{\hat{y}})) \cdot \boldsymbol{H} = (\boldsymbol{\hat{s}} \cdot \boldsymbol{\hat{y}})^2 (\boldsymbol{h} \cdot \boldsymbol{\hat{y}})

where :math:`\boldsymbol{h} = \boldsymbol{r} \times \boldsymbol{H}` and :math:`\boldsymbol{r}` is the position of the array center of pressure with respect to the system's center of mass. Taking the derivative with respect to :math:`t` and equating it to zero results in the third-order equation in :math:`\tan t`:
\theta = \left\{ \begin{array}[c|c|c] \\ \Theta_\text{max} \cdot \arctan(\sigma \nu^n) & \text{if} & \nu \geq 0 \\ 0 & \text{if} & \nu < 0 \\ \end{array} \right.

.. math::
(s_2 \cos t + s_3 \sin t) \left[(2s_2h_3+s_3h_2) \tan^2 t -3(s_3h_3-s_2h_2) \tan t - (2s_3h_2+s_2h_3) \right] = 0

whose desired solution is:
where :math:`\Theta_\text{max}`, :math:`\sigma`, and :math:`n` are user-defined parameters, and :math:`\nu` is defined as:

.. math::
\theta_{\text{Srp,}R} = t = \frac{3(s_3h_3-s_2h_2) - \sqrt{\Delta}}{4s_3h_2+2s_2h_3}.

In the presence of two solar arrays, it is not desirable to maneuver both to the angle that minimizes :math:`f(t)`. This is because one array will always reach an edge-on configuration, thus resulting in a SRP torque imbalance between the arrays. For this reason, the array(s) are maneuvered to the reference angle
\nu = - (\boldsymbol{r}_{O/C} \times \boldsymbol{\hat{r}}_\text{S}) \cdot \boldsymbol{H}_\text{RW}

.. math::
\theta_R = \theta_{\text{Sun,}R} - f(t) \left( \theta_{\text{Srp,}R} - \theta_{\text{Sun,}R} \right)
where :math:`\boldsymbol{r}_{O/C}` is the location of the array center of pressure with recpect to the system CM, :math:`\boldsymbol{\hat{r}}_\text{S}` is the direction of the Sun wirh respect to the spacecraft, and :math:`\boldsymbol{H}_\text{RW}` is the net wheel momentum.

to ensure that both arrays remain, on average, pointed at the Sun. When one array has the ability to generate a lot of dumping torque (:math:`f(t) \rightarrow -1`), its reference angle is skewed towards :math:`\theta_{\text{Srp,}R}`. Conversely, when :math:`f(t) \rightarrow 0` and there is not much momentum dumping capability, the array remains close to the maximum power-generating angle :math:`\theta_{\text{Sun,}R}`.
The parameter :math:`\Theta_\text{max}` allows to specify a maximum deflection of the array with respect to the Sun, in order to prevent it from ever reaching an edge-on configuration. The parameter :math:`\sigma` is a tuning gain, whether the exponent :math:`n > 1` allows to introduce a deadband around the zero rotation to avoid chattering.

For more details on the mathematical derivation, see R. Calaon, C. Allard and H. Schaub, "Momentum Management of a Spacecraft equipped with a Dual-Gimballed Electric Thruster", currently in preparation for submission to the Journal of Spacecraft and Rockets.
For more details on the mathematical derivation and stability considerations, see R. Calaon, C. Allard and H. Schaub, "Momentum Management of a Spacecraft equipped with a Dual-Gimballed Electric Thruster", currently in preparation for submission to the Journal of Spacecraft and Rockets.


User Guide
Expand All @@ -115,6 +105,9 @@ The required module configuration is::
saReference.a2Hat_B = [0, 0, 1]
saReference.attitudeFrame = 0
saReference.pointingMode = 0
saReference.ThetaMax = np.pi/2
saReference.sigma = 1
saReference.n = 1
unitTestSim.AddModelToTask(unitTaskName, saReference)

The module is configurable with the following parameters:
Expand All @@ -133,3 +126,9 @@ The module is configurable with the following parameters:
- 0 for reference angle computed w.r.t reference frame; 1 for reference angle computed w.r.t. body frame; defaults to 0 if not specified
* - ``pointingMode``
- 0 for maximum power generation; 1 maximum momentum dumping; defaults to 0 if not specified
* - ``ThetaMax``
- between 0 and Pi
* - ``sigma``
- tuning gain; setting to zero removes momentum management capability
* - ``n``
- n > 1 introduces a deadband around zero rotation.
Loading