-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
52bfba6
commit 75b4008
Showing
1 changed file
with
135 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
import numpy as np | ||
|
||
|
||
def make_demonstrations(n_demonstrations, n_steps, sigma=0.25, mu=0.5, | ||
start=np.zeros(2), goal=np.ones(2), random_state=None): | ||
"""Generates demonstration that can be used to test imitation learning. | ||
Parameters | ||
---------- | ||
n_demonstrations : int | ||
Number of noisy demonstrations | ||
n_steps : int | ||
Number of time steps | ||
sigma : float, optional (default: 0.25) | ||
Standard deviation of noisy component | ||
mu : float, optional (default: 0.5) | ||
Mean of noisy component | ||
start : array, shape (2,), optional (default: 0s) | ||
Initial position | ||
goal : array, shape (2,), optional (default: 1s) | ||
Final position | ||
random_state : int | ||
Seed for random number generator | ||
Returns | ||
------- | ||
X : array, shape (n_task_dims, n_steps, n_demonstrations) | ||
Noisy demonstrated trajectories | ||
ground_truth : array, shape (n_task_dims, n_steps) | ||
Original trajectory | ||
""" | ||
random_state = np.random.RandomState(random_state) | ||
|
||
X = np.empty((2, n_steps, n_demonstrations)) | ||
|
||
# Generate ground-truth for plotting | ||
ground_truth = np.empty((2, n_steps)) | ||
T = np.linspace(-0, 1, n_steps) | ||
ground_truth[0] = T | ||
ground_truth[1] = (T / 20 + 1 / (sigma * np.sqrt(2 * np.pi)) * | ||
np.exp(-0.5 * ((T - mu) / sigma) ** 2)) | ||
|
||
# Generate trajectories | ||
for i in range(n_demonstrations): | ||
noisy_sigma = sigma * random_state.normal(1.0, 0.1) | ||
noisy_mu = mu * random_state.normal(1.0, 0.1) | ||
X[0, :, i] = T | ||
X[1, :, i] = T + (1 / (noisy_sigma * np.sqrt(2 * np.pi)) * | ||
np.exp(-0.5 * ((T - noisy_mu) / | ||
noisy_sigma) ** 2)) | ||
|
||
# Spatial alignment | ||
current_start = ground_truth[:, 0] | ||
current_goal = ground_truth[:, -1] | ||
current_amplitude = current_goal - current_start | ||
amplitude = goal - start | ||
ground_truth = ((ground_truth.T - current_start) * amplitude / | ||
current_amplitude + start).T | ||
|
||
for demo_idx in range(n_demonstrations): | ||
current_start = X[:, 0, demo_idx] | ||
current_goal = X[:, -1, demo_idx] | ||
current_amplitude = current_goal - current_start | ||
X[:, :, demo_idx] = ((X[:, :, demo_idx].T - current_start) * | ||
amplitude / current_amplitude + start).T | ||
|
||
return X, ground_truth | ||
|
||
|
||
if __name__ == "__main__": | ||
import matplotlib.pyplot as plt | ||
from gmr import GMM, plot_error_ellipses, kmeansplusplus_initialization, covariance_initialization, plot_error_ellipses | ||
from gmr.utils import check_random_state | ||
|
||
X, _ = make_demonstrations( | ||
n_demonstrations=200, n_steps=100, goal=np.array([1., 2.]), | ||
random_state=0) | ||
X = X.transpose(2, 1, 0) | ||
n_demonstrations, n_steps, n_task_dims = X.shape | ||
X_train = np.empty((n_demonstrations, n_steps, n_task_dims + 1)) | ||
X_train[:, :, 1:] = X | ||
t = np.linspace(0, 1, n_steps) | ||
X_train[:, :, 0] = t | ||
X_train = X_train.reshape(n_demonstrations * n_steps, n_task_dims + 1) | ||
|
||
random_state = check_random_state(0) | ||
n_components = 5 | ||
initial_means = kmeansplusplus_initialization(X_train, n_components, random_state) | ||
initial_covs = covariance_initialization(X_train, n_components) | ||
gmm = GMM(n_components=n_components, | ||
priors=np.ones(n_components, dtype=np.float) / n_components, | ||
means=np.copy(initial_means), | ||
covariances=initial_covs, | ||
verbose=2, | ||
random_state=random_state) | ||
gmm.from_samples(X_train, n_iter=200, max_eff_sample=0.5) | ||
|
||
plt.figure() | ||
plt.subplot(111) | ||
|
||
for step in t: | ||
conditional_gmm = gmm.condition([0], np.array([step])) | ||
samples = conditional_gmm.sample(100) | ||
#plot_error_ellipses(plt.gca(), conditional_gmm, colors=["r", "g", "b"]) | ||
#print(conditional_gmm.priors) | ||
#print(conditional_gmm.means) | ||
#print(conditional_gmm.covariances) | ||
plt.scatter(samples[:, 0], samples[:, 1], s=10) | ||
|
||
from matplotlib.patches import Ellipse | ||
from itertools import cycle | ||
colors = cycle(["r", "g", "b"]) | ||
for factor in np.linspace(0.5, 4.0, 8): | ||
new_gmm = GMM(n_components=len(gmm.means), priors=gmm.priors, means=gmm.means[:, 1:], covariances=gmm.covariances[:, 1:, 1:], random_state=gmm.random_state) | ||
#k = 0 | ||
for mean, (angle, width, height) in new_gmm.to_ellipses(factor): | ||
ell = Ellipse(xy=mean, width=width, height=height, | ||
angle=np.degrees(angle)) | ||
ell.set_alpha(0.2) | ||
#ell.set_alpha(new_gmm.priors[k]) | ||
#k += 1 | ||
ell.set_color(next(colors)) | ||
plt.gca().add_artist(ell) | ||
|
||
plt.plot(X[:, :, 0].T, X[:, :, 1].T, alpha=0.2) | ||
plt.xlabel("$x_1$") | ||
plt.ylabel("$x_2$") | ||
plt.show() |