Skip to content

Commit

Permalink
Implement quadrilateral_areas using broadcasting
Browse files Browse the repository at this point in the history
We need to define a vecdot function (which is available in the Array
API but not the main numpy API, sadly), which will compute the dot
product of the last axis of two arrays.
  • Loading branch information
angus-g committed Sep 6, 2023
1 parent c423f52 commit dccdede
Show file tree
Hide file tree
Showing 3 changed files with 38 additions and 44 deletions.
45 changes: 17 additions & 28 deletions regional_mom6/regional_mom6.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from dask.diagnostics import ProgressBar
import datetime as dt
import warnings
from .utils import vecdot

warnings.filterwarnings("ignore")

Expand All @@ -22,8 +23,8 @@
"dz",
"angle_between",
"latlon_to_cartesian",
"quadilateral_area",
"quadilateral_areas",
"quadrilateral_area",
"quadrilateral_areas",
"rectangular_hgrid",
"experiment",
"segment",
Expand Down Expand Up @@ -286,28 +287,28 @@ def angle_between(v1, v2, v3):
v1xv2 = np.cross(v1, v2)
v1xv3 = np.cross(v1, v3)

cosangle = np.dot(v1xv2, v1xv3) / np.sqrt(
np.dot(v1xv2, v1xv2) * np.dot(v1xv3, v1xv3)
cosangle = vecdot(v1xv2, v1xv3) / np.sqrt(
vecdot(v1xv2, v1xv2) * vecdot(v1xv3, v1xv3)
)

return np.arccos(cosangle)


def quadilateral_area(v1, v2, v3, v4):
def quadrilateral_area(v1, v2, v3, v4):
"""Returns area of a spherical quadrilateral on the unit sphere that
has vertices on 3-vectors `v1`, `v2`, `v3`, `v4` (counter-clockwise
orientation is implied). The area is computed via the excess of the
sum of the spherical angles of the quadrilateral from 2π."""

if not (
np.isclose(np.dot(v1, v1), np.dot(v2, v2))
& np.isclose(np.dot(v1, v1), np.dot(v2, v2))
& np.isclose(np.dot(v1, v1), np.dot(v3, v3))
& np.isclose(np.dot(v1, v1), np.dot(v4, v4))
np.all(np.isclose(vecdot(v1, v1), vecdot(v2, v2)))
& np.all(np.isclose(vecdot(v1, v1), vecdot(v2, v2)))
& np.all(np.isclose(vecdot(v1, v1), vecdot(v3, v3)))
& np.all(np.isclose(vecdot(v1, v1), vecdot(v4, v4)))
):
raise ValueError("vectors provided must have the same length")

R = np.sqrt(np.dot(v1, v1))
R = np.sqrt(vecdot(v1, v1))

a1 = angle_between(v1, v2, v4)
a2 = angle_between(v2, v3, v1)
Expand All @@ -328,7 +329,7 @@ def latlon_to_cartesian(lat, lon, R=1):
return x, y, z


def quadilateral_areas(lat, lon, R=1):
def quadrilateral_areas(lat, lon, R=1):
"""Returns area of spherical quadrilaterals on a sphere of radius `R`. By default, `R = 1`.
The quadrilaterals are formed by constant latitude and longitude lines on the `lat`-`lon` grid provided.
Expand All @@ -342,23 +343,11 @@ def quadilateral_areas(lat, lon, R=1):
then `areas` is `(m-1) x (n-1)`.
"""

x, y, z = latlon_to_cartesian(lat, lon, R)
coords = np.dstack(latlon_to_cartesian(lat, lon, R))

nx, ny = np.shape(lat)

areas = np.zeros((nx - 1, ny - 1))

for j in range(ny - 1):
for i in range(nx - 1):
# construct the 4 3-vectors v1, v2, v3, v4 that point to the vertices of the quadrilaterals
v1 = [x[i, j], y[i, j], z[i, j]]
v2 = [x[i, j + 1], y[i, j + 1], z[i, j + 1]]
v3 = [x[i + 1, j + 1], y[i + 1, j + 1], z[i + 1, j + 1]]
v4 = [x[i + 1, j], y[i + 1, j], z[i + 1, j]]

areas[i, j] = quadilateral_area(v1, v2, v3, v4)

return areas
return quadrilateral_area(
coords[:-1, :-1, :], coords[:-1, 1:, :], coords[1:, 1:, :], coords[1:, :-1, :]
)


def rectangular_hgrid(λ, φ):
Expand Down Expand Up @@ -398,7 +387,7 @@ def rectangular_hgrid(λ, φ):

lon, lat = np.meshgrid(λ, φ)

area = quadilateral_areas(lat, lon, R)
area = quadrilateral_areas(lat, lon, R)

attrs = {
"tile": {
Expand Down
5 changes: 5 additions & 0 deletions regional_mom6/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
import numpy as np


def vecdot(v1, v2):
return np.sum(v1 * v2, axis=-1)
32 changes: 16 additions & 16 deletions tests/test_grid_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
import pytest
from regional_mom6 import angle_between
from regional_mom6 import latlon_to_cartesian
from regional_mom6 import quadilateral_area
from regional_mom6 import quadilateral_areas
from regional_mom6 import quadrilateral_area
from regional_mom6 import quadrilateral_areas
from regional_mom6 import rectangular_hgrid
import xarray as xr

Expand Down Expand Up @@ -38,23 +38,23 @@ def test_angle_between(v1, v2, v3, true_angle):
("v1", "v2", "v3", "v4", "true_area"),
[
(
latlon_to_cartesian(0, 0),
latlon_to_cartesian(0, 90),
latlon_to_cartesian(90, 0),
latlon_to_cartesian(0, -90),
np.dstack(latlon_to_cartesian(0, 0)),
np.dstack(latlon_to_cartesian(0, 90)),
np.dstack(latlon_to_cartesian(90, 0)),
np.dstack(latlon_to_cartesian(0, -90)),
np.pi,
),
(
latlon_to_cartesian(0, 0),
latlon_to_cartesian(90, 0),
latlon_to_cartesian(0, 90),
latlon_to_cartesian(-90, 0),
np.dstack(latlon_to_cartesian(0, 0)),
np.dstack(latlon_to_cartesian(90, 0)),
np.dstack(latlon_to_cartesian(0, 90)),
np.dstack(latlon_to_cartesian(-90, 0)),
np.pi,
),
],
)
def test_quadilateral_area(v1, v2, v3, v4, true_area):
assert np.isclose(quadilateral_area(v1, v2, v3, v4), true_area)
def test_quadrilateral_area(v1, v2, v3, v4, true_area):
assert np.isclose(quadrilateral_area(v1, v2, v3, v4), true_area)


v1 = latlon_to_cartesian(0, 0, R=2)
Expand All @@ -63,9 +63,9 @@ def test_quadilateral_area(v1, v2, v3, v4, true_area):
v4 = latlon_to_cartesian(-90, 0, R=2.1)


def test_quadilateral_area_exception():
def test_quadrilateral_area_exception():
with pytest.raises(ValueError) as excinfo:
quadilateral_area(v1, v2, v3, v4)
quadrilateral_area(v1, v2, v3, v4)

assert str(excinfo.value) == "vectors provided must have the same length"

Expand All @@ -86,8 +86,8 @@ def test_quadilateral_area_exception():
(lat2, lon2, area2),
],
)
def test_quadilateral_areas(lat, lon, true_area):
assert np.isclose(np.sum(quadilateral_areas(lat, lon)), true_area)
def test_quadrilateral_areas(lat, lon, true_area):
assert np.isclose(np.sum(quadrilateral_areas(lat, lon)), true_area)


# a simple test that rectangular_hgrid runs without erroring
Expand Down

1 comment on commit dccdede

@navidcy
Copy link
Contributor

@navidcy navidcy commented on dccdede Sep 6, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

oh nice catch of the typo quadi... -> quadri...

Please sign in to comment.