Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding support vLLM openai entrypoint benchmarking script #793

Merged
merged 8 commits into from
Sep 3, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -114,13 +114,15 @@ async def send_request(
top_k: int,
tokenizer: PreTrainedTokenizerBase,
sax_model: str,
model: str,
) -> None:
"""Sends request to server."""
request_start_time = time.time()

headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"model": model,
"prompt": prompt,
"n": 1,
"best_of": best_of,
Expand Down Expand Up @@ -219,9 +221,8 @@ async def send_request(
output_token_ids = tokenizer(output["generated_text"]).input_ids
output_len = len(output_token_ids)
elif backend == "vllm":
total_token_ids = tokenizer(output["text"][0]).input_ids
new_total_len = len(total_token_ids)
output_len = new_total_len - prompt_len
output_token_ids = tokenizer(output["choices"][0]["text"]).input_ids
output_len = len(output_token_ids)
elif backend == "jetstream":
output_token_ids = tokenizer(output["response"]).input_ids
output_len = len(output_token_ids)
Expand All @@ -240,6 +241,7 @@ async def benchmark(
top_k: int,
tokenizer: PreTrainedTokenizerBase,
sax_model: str,
model: str,
) -> None:
"""Runs benchmark with asynchronous requests."""
tasks: List[asyncio.Task] = []
Expand All @@ -257,6 +259,7 @@ async def benchmark(
top_k,
tokenizer,
sax_model,
model,
)
)
tasks.append(task)
Expand All @@ -268,7 +271,13 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
np.random.seed(args.seed)

api_url = f"http://{args.host}:{args.port}/{args.endpoint}"
endpoint = (
"v1/completions"
if args.backend == "vllm"
else args.endpoint
)

api_url = f"http://{args.host}:{args.port}/{endpoint}"
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code
)
Expand All @@ -293,6 +302,7 @@ def main(args: argparse.Namespace):
args.top_k,
tokenizer,
args.sax_model,
args.model,
)
)
benchmark_end_time = time.time()
Expand Down Expand Up @@ -388,6 +398,11 @@ def main(args: argparse.Namespace):
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=7080)
parser.add_argument("--dataset", type=str, help="Path to the dataset.")
parser.add_argument(
"--model",
type=str,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,5 +23,8 @@ for request_rate in $(echo $REQUEST_RATES | tr ',' ' '); do
# TODO: Check if profile already exists, if so then skip
timestamp=$(date +"%Y-%m-%d_%H-%M-%S")
output_file="latency-profile-${timestamp}.txt"
python3 benchmark_serving.py --host="$IP" --port="$PORT" --dataset=ShareGPT_V3_unfiltered_cleaned_split.json --tokenizer="$TOKENIZER" --request-rate=$request_rate --backend="$BACKEND" --num-prompts=$((request_rate * 30)) --max-input-length=$INPUT_LENGTH --max-output-length=$OUTPUT_LENGTH > $output_file
done
python3 benchmark_serving.py --host="$IP" --port="$PORT" --model="$TOKENIZER" --dataset=ShareGPT_V3_unfiltered_cleaned_split.json --tokenizer="$TOKENIZER" --request-rate=$request_rate --backend="$BACKEND" --num-prompts=$((request_rate * 30)) --max-input-length=$INPUT_LENGTH --max-output-length=$OUTPUT_LENGTH > $output_file
cat $output_file
Edwinhr716 marked this conversation as resolved.
Show resolved Hide resolved
sleep 5 # wait 5 minutes before next run
done

Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ k8s_hf_secret = "hf-token"

# Benchmark configuration for Locust Docker accessing inference server
request_rates = [5, 10, 15, 20]
artifact_registry = "your_project_artifact_registry"

# Model server configuration information
targets = {
Expand All @@ -39,4 +40,4 @@ targets = {
service_port = "your_model_service_service_port"
tokenizer = "your_tokenizer"
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ spec:
- name: vllm
ports:
- containerPort: 80
image: "vllm/vllm-openai:v0.3.3"
image: "vllm/vllm-openai:v0.5.5"
command: ["python3", "-m", "vllm.entrypoints.openai.api_server"]
args: ["--model", "${model_id}", "--tensor-parallel-size", "${gpu_count}", "--port", "80", "--swap-space", "${swap_space}", "--disable-log-requests"]
env:
Expand Down
Loading