Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Offline MLPerf Benchmarking #483

Merged
merged 1 commit into from
Dec 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
298 changes: 298 additions & 0 deletions dags/inference/maxtext_inference_offline_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,298 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities to construct configs for maxtext offline benchmarks DAG."""

import datetime

from airflow import models
from dags import test_owner, composer_env
from dags.vm_resource import TpuVersion, Zone, Project, RuntimeVersion, V6E_GCE_NETWORK, V6E_GCE_SUBNETWORK
from dags.multipod.configs import common
from dags.multipod.configs.common import SetupMode
from xlml.apis import gcp_config, metric_config, task, test_config

PROJECT_NAME = Project.CLOUD_TPU_INFERENCE_TEST.value
RUNTIME_IMAGE = RuntimeVersion.V2_ALPHA_TPUV6.value
GCS_SUBFOLDER_PREFIX = test_owner.Team.INFERENCE.value

# Run once a day at 5 am UTC (9 pm PST)
SCHEDULED_TIME = "0 5 * * *" if composer_env.is_prod_env() else None


def get_mlperf_converter_script():
return """cat << 'EOL' > convert_logs.py
import json
import re
import jsonlines
import pkg_resources
import os
from typing import Optional

def find_git_dir(start_path: str) -> Optional[str]:
current_path = os.path.abspath(start_path)
while current_path != "/":
git_path = os.path.join(current_path, ".git")
if os.path.exists(git_path) and os.path.isdir(git_path):
return current_path
current_path = os.path.dirname(current_path)
return None

def get_git_commit(repo_path: Optional[str] = None) -> str:
try:
if repo_path is None:
repo_path = find_git_dir(os.getcwd())
if repo_path is None:
return "unknown"

head_path = os.path.join(repo_path, ".git", "HEAD")
with open(head_path, "r") as f:
head_content = f.read().strip()

if head_content.startswith("ref: "):
ref_path = head_content[5:]
ref_full_path = os.path.join(repo_path, ".git", ref_path)
with open(ref_full_path, "r") as f:
return f.read().strip()
return head_content
except Exception as e:
print(f"Warning: Could not get git commit: {str(e)}")
return "unknown"

def get_package_version(package_name: str) -> str:
try:
return pkg_resources.get_distribution(package_name).version
except:
return "unknown"

def convert_mlperf_log_to_jsonlines(
log_file_path: str,
output_path: str,
repo_path: Optional[str] = None
) -> dict:
dimension_keys = {
"loadgen_version", "test_datetime", "requested_scenario",
"requested_test_mode", "effective_scenario", "effective_test_mode",
"power_begin", "power_end", "result_validity",
"early_stopping_ttft_result", "early_stopping_tpot_result"
}

metrics = {}
dimensions = {}

with open(log_file_path, "r") as f:
log_content = f.read()

log_pattern = r":::MLLOG ({.*})"
for line in log_content.split("\\n"):
match = re.search(log_pattern, line)
if match:
try:
entry = json.loads(match.group(1))
key = entry.get("key", "")
value = entry.get("value")

if isinstance(value, (int, float)):
metrics[key] = value
elif key in dimension_keys:
dimensions[key] = value
except json.JSONDecodeError:
continue

dimensions["maxtext_commit_id"] = get_git_commit(repo_path)
dimensions["jax_version"] = get_package_version("jax")
dimensions["libtpu_version"] = get_package_version("libtpu")
dimensions["libtpu_nightly_version"] = get_package_version("libtpu-nightly")

result = {"metrics": metrics, "dimensions": dimensions}

output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)

with jsonlines.open(output_path, mode="w") as writer:
writer.write(result)

return result

if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser(description="Convert MLPerf log to jsonlines format")
parser.add_argument("--log-file", type=str, required=True,
help="Path to the MLPerf log file")
parser.add_argument("--output-file", type=str, required=True,
help="Path for the output jsonlines file")
parser.add_argument("--repo-path", type=str, default=None,
help="Path to the git repository (optional, will auto-detect if not provided)")

args = parser.parse_args()

log_file = os.path.abspath(args.log_file)
output_file = os.path.abspath(args.output_file)
repo_path = os.path.abspath(args.repo_path) if args.repo_path else None

result = convert_mlperf_log_to_jsonlines(
log_file,
output_file,
repo_path
)
print(f"Conversion complete. Output written to: {output_file}")
EOL"""


def maxtext_inference_offline_benchmark_config(
tpu_version: TpuVersion,
tpu_cores: int,
tpu_zone: str,
time_out_in_min: int,
test_name: str,
test_mode: common.SetupMode,
project_name: str = PROJECT_NAME,
runtime_version: str = RUNTIME_IMAGE,
network: str = "default",
subnetwork: str = "default",
is_tpu_reserved: bool = True,
num_slices: int = 1,
maxtext_branch: str = "",
):
job_gcp_config = gcp_config.GCPConfig(
project_name=project_name,
zone=tpu_zone,
dataset_name=metric_config.DatasetOption.BENCHMARK_DATASET,
)

git_clone_maxtext = "git clone https://github.com/google/maxtext.git"
if maxtext_branch:
git_clone_maxtext += f" -b {maxtext_branch}"

set_up_cmds = (
"pip install --upgrade pip",
"sudo apt-get -y update",
"sudo apt-get -y install python3.10-venv",
"sudo apt-get -y install jq",
"python -m venv .env",
"source .env/bin/activate",
# Setup Loadgen
"git clone https://github.com/mlcommons/inference.git",
"cd inference/loadgen && pip install . && cd ../..",
# Setup MaxText
git_clone_maxtext,
f"cd maxtext && bash setup.sh MODE={test_mode.value} && cd ..",
"pip install -r maxtext/MaxText/inference_mlperf/requirements.txt",
"cd maxtext/MaxText/inference_mlperf/trillium",
# Copy Dataset
"gsutil cp gs://cloud-tpu-inference-public/mlcommons/inference/language/llama2-70b/data/processed-openorca/open_orca_gpt4_tokenized_llama.sampled_24576.pkl /tmp/processed-data.pkl",
"cp ../user100.conf ./",
)

add_accuracy_to_metrics = r"""tac evaluate_offline_accuracy_log.log | grep -m1 '{.*}' | \ # read file in reverse, grep first json-like pattern
tr -d "'" | \ # Removes all single quotes from the output
tr -d '\000-\037' | \ # Removes all ASCII control characters (characters 0-31 in decimal)
sed 's/\([a-zA-Z0-9_]*\):/"\1":/g' | \ # Adds double quotes around JSON keys that aren't already quoted
sed 's/np\.[a-zA-Z0-9_]*(\([0-9.]*\))/\1/g' | \ # Converts numpy function calls with numbers (like np.float64(0.123)) to just the number
sed 's/{/{"metrics":{/; s/}/}}/' | \ # Wraps the JSON object in a "metrics" field
jq -sc '.[0].metrics += .[1].metrics | .[0]' acc_metric_report.jsonl - > acc_combined_output.jsonl""" # Combines metrics objects

run_performance = (
"source .env/bin/activate",
"export DATA_DISK_DIR=/tmp",
"export CHECKPOINT=gs://inference-benchmarks/models/llama2-70b-chat/quant/int8_",
"export TOKENIZER_PATH=/home/ml-auto-solutions/maxtext/assets/tokenizer.llama2",
"export LOGLEVEL=WARNING", # the logging at the INFO level was too much and hit some quotas
"cd maxtext/MaxText/inference_mlperf/trillium",
"bash benchmarks_llama2-70b-trillium_2x4.sh -x -s -t -b performance",
'cp "$(ls -t /tmp/logs/*performance*/mlperf_log_detail.txt | head -n1)" ./perf_log.txt',
get_mlperf_converter_script(),
"python3 convert_logs.py --log-file perf_log.txt --output-file perf_metric_report.jsonl",
)

run_accuracy = (
"export FAST_EVAL=true",
"bash benchmarks_llama2-70b-trillium_2x4.sh -x -s -t -b accuracy",
'cp "$(ls -t /tmp/logs/*accuracy*/mlperf_log_detail.txt | head -n1)" ./acc_log.txt',
'cp "$(ls -t /tmp/logs/*accuracy*/evaluate_offline_accuracy_log.log | head -n1)" ./evaluate_offline_accuracy_log.log',
"python3 convert_logs.py --log-file acc_log.txt --output-file acc_metric_report.jsonl",
add_accuracy_to_metrics,
'jq -c "." perf_metric_report.jsonl > temp_perf.jsonl',
'jq -c "." acc_combined_output.jsonl > temp_acc.jsonl',
"cat temp_perf.jsonl temp_acc.jsonl > combined_results.jsonl",
f"gsutil cp combined_results.jsonl {metric_config.SshEnvVars.GCS_OUTPUT.value}",
)

run_model_cmds = run_performance + run_accuracy

job_test_config = test_config.TpuVmTest(
test_config.Tpu(
version=tpu_version,
cores=tpu_cores,
runtime_version=runtime_version,
reserved=is_tpu_reserved,
network=network,
subnetwork=subnetwork,
),
test_name=test_name,
set_up_cmds=set_up_cmds,
run_model_cmds=run_model_cmds,
timeout=datetime.timedelta(minutes=time_out_in_min),
task_owner=test_owner.PATE_M,
num_slices=num_slices,
gcs_subfolder=f"{GCS_SUBFOLDER_PREFIX}/maxtext",
)

job_metric_config = metric_config.MetricConfig(
json_lines=metric_config.JSONLinesConfig("combined_results.jsonl"),
use_runtime_generated_gcs_folder=True,
)

return task.run_queued_resource_test(
task_test_config=job_test_config,
task_gcp_config=job_gcp_config,
task_metric_config=job_metric_config,
)


USER_PREFIX = ""
gcs_subfolder_prefix = test_owner.Team.INFERENCE.value

tags = ["inference_team", "maxtext", "offline", "benchmark"]

if USER_PREFIX:
dag_id = f"{USER_PREFIX}_maxtext_inference_offline_benchmark"
tags.append(USER_PREFIX)
else:
dag_id = "maxtext_inference_offline_benchmark"

with models.DAG(
dag_id=dag_id,
tags=tags,
start_date=datetime.datetime(2024, 1, 19),
schedule=SCHEDULED_TIME,
catchup=False,
) as dag:
test_name_prefix = dag_id
maxtext_offline_benchmark = maxtext_inference_offline_benchmark_config(
tpu_version=TpuVersion.TRILLIUM,
tpu_cores=8,
tpu_zone=Zone.EUROPE_WEST4_A.value,
time_out_in_min=300,
test_name="maxtext_inference_offline_benchmark",
test_mode=SetupMode.STABLE,
project_name=Project.CLOUD_ML_AUTO_SOLUTIONS.value,
runtime_version=RuntimeVersion.V2_ALPHA_TPUV6.value,
network=V6E_GCE_NETWORK,
subnetwork=V6E_GCE_SUBNETWORK,
is_tpu_reserved=True,
maxtext_branch="",
)
1 change: 1 addition & 0 deletions dags/test_owner.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ class Team(enum.Enum):
XIANG_S = "Xiang S."
MORGAN_D = "Morgan D."
YIJIA_J = "Yijia J."
PATE_M = "Pate M."

# 3P Ecosystems
RICHARD_L = "Richard L."
Expand Down
Loading