Skip to content

Commit

Permalink
Create quantum_optimization.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jan 20, 2025
1 parent 240c84d commit 60bf4d2
Showing 1 changed file with 128 additions and 0 deletions.
128 changes: 128 additions & 0 deletions quantum/algorithms/quantum_optimization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
# quantum_optimization.py
import numpy as np
from qiskit import Aer
from qiskit.circuit import QuantumCircuit
from qiskit.algorithms import QAOA
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Sampler
from qiskit.quantum_info import Pauli
from qiskit.utils import QuantumInstance

class QuantumOptimizer:
def __init__(self, n_qubits, p):
"""
Initialize the Quantum Optimizer using QAOA.
Parameters:
- n_qubits: Number of qubits for the optimization problem.
- p: Number of layers in the QAOA circuit.
"""
self.n_qubits = n_qubits
self.p = p
self.optimizer = SLSQP(maxiter=100)
self.backend = Aer.get_backend('aer_simulator')
self.quantum_instance = QuantumInstance(self.backend)

def create_qaoa_circuit(self, gamma, beta):
"""
Create a QAOA circuit for the Max-Cut problem.
Parameters:
- gamma: Rotation angles for the phase separation.
- beta: Rotation angles for the mixing.
Returns:
- QuantumCircuit: The constructed QAOA circuit.
"""
circuit = QuantumCircuit(self.n_qubits)

# Apply Hadamard gates to initialize in superposition
circuit.h(range(self.n_qubits))

# Apply the QAOA layers
for layer in range(self.p):
# Phase separation
for qubit in range(self.n_qubits):
circuit.rz(2 * gamma[layer], qubit)
for qubit in range(self.n_qubits - 1):
circuit.cx(qubit, qubit + 1)
circuit.rz(2 * gamma[layer], qubit + 1)
circuit.cx(qubit, qubit + 1)

# Mixing
for qubit in range(self.n_qubits):
circuit.rx(2 * beta[layer], qubit)

return circuit

def objective_function(self, params):
"""
Objective function to minimize.
Parameters:
- params: Parameters for the QAOA circuit (gamma and beta).
Returns:
- float: The objective value (energy).
"""
# Split parameters into gamma and beta
gamma = params[:self.p]
beta = params[self.p:]

# Create the QAOA circuit
circuit = self.create_qaoa_circuit(gamma, beta)

# Measure the circuit
circuit.measure_all()

# Execute the circuit
sampler = Sampler(self.backend)
counts = sampler.run(circuit, shots=1024).result().get_counts()

# Calculate the objective value (energy)
objective_value = 0
for outcome, count in counts.items():
# Calculate the contribution of each outcome to the objective value
# Here, we assume a simple Max-Cut problem where we want to maximize the number of edges cut
# This part should be customized based on the specific problem being solved
objective_value += count * self.calculate_cut_value(outcome)

return -objective_value / 1024 # Minimize the negative objective value

def calculate_cut_value(self, outcome):
"""
Calculate the cut value for a given outcome.
Parameters:
- outcome: The measurement outcome (string of bits).
Returns:
- int: The cut value for the given outcome.
"""
# Example cut value calculation for a simple graph
# This should be customized based on the specific graph structure
cut_value = 0
# Implement logic to calculate cut value based on the outcome
return cut_value

def optimize(self):
"""
Optimize the QAOA parameters to find the best solution.
Returns:
- result: The optimization result containing the best parameters and objective value.
"""
initial_params = np.random.rand(2 * self.p) # Random initial parameters
result = self.optimizer.minimize(self.objective_function, initial_params)
return result

if __name__ == "__main__":
# Example usage
n_qubits = 4 # Number of qubits for the optimization problem
p = 2 # Number of layers in the QAOA circuit

optimizer = QuantumOptimizer(n_qubits, p)
result = optimizer.optimize()

print(f"Optimal parameters: {result.x}")
print(f"Optimal objective value: {result.fun}")

0 comments on commit 60bf4d2

Please sign in to comment.