-
-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
128 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# quantum_optimization.py | ||
import numpy as np | ||
from qiskit import Aer | ||
from qiskit.circuit import QuantumCircuit | ||
from qiskit.algorithms import QAOA | ||
from qiskit.algorithms.optimizers import SLSQP | ||
from qiskit.primitives import Sampler | ||
from qiskit.quantum_info import Pauli | ||
from qiskit.utils import QuantumInstance | ||
|
||
class QuantumOptimizer: | ||
def __init__(self, n_qubits, p): | ||
""" | ||
Initialize the Quantum Optimizer using QAOA. | ||
Parameters: | ||
- n_qubits: Number of qubits for the optimization problem. | ||
- p: Number of layers in the QAOA circuit. | ||
""" | ||
self.n_qubits = n_qubits | ||
self.p = p | ||
self.optimizer = SLSQP(maxiter=100) | ||
self.backend = Aer.get_backend('aer_simulator') | ||
self.quantum_instance = QuantumInstance(self.backend) | ||
|
||
def create_qaoa_circuit(self, gamma, beta): | ||
""" | ||
Create a QAOA circuit for the Max-Cut problem. | ||
Parameters: | ||
- gamma: Rotation angles for the phase separation. | ||
- beta: Rotation angles for the mixing. | ||
Returns: | ||
- QuantumCircuit: The constructed QAOA circuit. | ||
""" | ||
circuit = QuantumCircuit(self.n_qubits) | ||
|
||
# Apply Hadamard gates to initialize in superposition | ||
circuit.h(range(self.n_qubits)) | ||
|
||
# Apply the QAOA layers | ||
for layer in range(self.p): | ||
# Phase separation | ||
for qubit in range(self.n_qubits): | ||
circuit.rz(2 * gamma[layer], qubit) | ||
for qubit in range(self.n_qubits - 1): | ||
circuit.cx(qubit, qubit + 1) | ||
circuit.rz(2 * gamma[layer], qubit + 1) | ||
circuit.cx(qubit, qubit + 1) | ||
|
||
# Mixing | ||
for qubit in range(self.n_qubits): | ||
circuit.rx(2 * beta[layer], qubit) | ||
|
||
return circuit | ||
|
||
def objective_function(self, params): | ||
""" | ||
Objective function to minimize. | ||
Parameters: | ||
- params: Parameters for the QAOA circuit (gamma and beta). | ||
Returns: | ||
- float: The objective value (energy). | ||
""" | ||
# Split parameters into gamma and beta | ||
gamma = params[:self.p] | ||
beta = params[self.p:] | ||
|
||
# Create the QAOA circuit | ||
circuit = self.create_qaoa_circuit(gamma, beta) | ||
|
||
# Measure the circuit | ||
circuit.measure_all() | ||
|
||
# Execute the circuit | ||
sampler = Sampler(self.backend) | ||
counts = sampler.run(circuit, shots=1024).result().get_counts() | ||
|
||
# Calculate the objective value (energy) | ||
objective_value = 0 | ||
for outcome, count in counts.items(): | ||
# Calculate the contribution of each outcome to the objective value | ||
# Here, we assume a simple Max-Cut problem where we want to maximize the number of edges cut | ||
# This part should be customized based on the specific problem being solved | ||
objective_value += count * self.calculate_cut_value(outcome) | ||
|
||
return -objective_value / 1024 # Minimize the negative objective value | ||
|
||
def calculate_cut_value(self, outcome): | ||
""" | ||
Calculate the cut value for a given outcome. | ||
Parameters: | ||
- outcome: The measurement outcome (string of bits). | ||
Returns: | ||
- int: The cut value for the given outcome. | ||
""" | ||
# Example cut value calculation for a simple graph | ||
# This should be customized based on the specific graph structure | ||
cut_value = 0 | ||
# Implement logic to calculate cut value based on the outcome | ||
return cut_value | ||
|
||
def optimize(self): | ||
""" | ||
Optimize the QAOA parameters to find the best solution. | ||
Returns: | ||
- result: The optimization result containing the best parameters and objective value. | ||
""" | ||
initial_params = np.random.rand(2 * self.p) # Random initial parameters | ||
result = self.optimizer.minimize(self.objective_function, initial_params) | ||
return result | ||
|
||
if __name__ == "__main__": | ||
# Example usage | ||
n_qubits = 4 # Number of qubits for the optimization problem | ||
p = 2 # Number of layers in the QAOA circuit | ||
|
||
optimizer = QuantumOptimizer(n_qubits, p) | ||
result = optimizer.optimize() | ||
|
||
print(f"Optimal parameters: {result.x}") | ||
print(f"Optimal objective value: {result.fun}") |