使用tensorflow实现论文Improve Diverse Text Generation by Self Labeling Conditional Variational Auto Encoder 论文链接paper
参考Knowledge-Guided CVAE for dialog generation的tensorflow实现代码.
论文模型如下:
- 对话数据集,同kgCVAE
- 自动回复聊天数据集
- TensorFlow 1.12.0
- cuDNN 6
- Python 2.7
- Numpy
- NLTK
- You may need to pip install beeprint if the module is missing
python kgcvae_swda.py
Modify the TF flags at the top of kgcvae_swda.py as follows to run a existing model
forward_only: False -> True
test_path: set to the folder contains the model. E.g. runxxxx
Then you can run the model by:
python kgcvae_swda.py
The outputs will be printed to stdout and generated responses will be saved at test.txt in the test_path.