-
Notifications
You must be signed in to change notification settings - Fork 4
/
Main.R
223 lines (192 loc) · 7.58 KB
/
Main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2024 Observational Health Data Sciences and Informatics
#
# This file is part of CohortGeneratorModule
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adding library references that are required for Strategus
library(CohortGenerator)
library(DatabaseConnector)
library(keyring)
library(ParallelLogger)
library(SqlRender)
# Adding RSQLite so that we can test modules with Eunomia
library(RSQLite)
# Module methods -------------------------
getModuleInfo <- function() {
checkmate::assert_file_exists("MetaData.json")
return(ParallelLogger::loadSettingsFromJson("MetaData.json"))
}
getSharedResourceByClassName <- function(sharedResources, className) {
returnVal <- NULL
for (i in 1:length(sharedResources)) {
if (className %in% class(sharedResources[[i]])) {
returnVal <- sharedResources[[i]]
break
}
}
invisible(returnVal)
}
createCohortDefinitionSetFromJobContext <- function(sharedResources, settings) {
cohortDefinitions <- list()
if (length(sharedResources) <= 0) {
stop("No shared resources found")
}
cohortDefinitionSharedResource <- getSharedResourceByClassName(
sharedResources = sharedResources,
class = "CohortDefinitionSharedResources"
)
if (is.null(cohortDefinitionSharedResource)) {
stop("Cohort definition shared resource not found!")
}
cohortDefinitions <- cohortDefinitionSharedResource$cohortDefinitions
if (length(cohortDefinitions) <= 0) {
stop("No cohort definitions found")
}
cohortDefinitionSet <- CohortGenerator::createEmptyCohortDefinitionSet()
for (i in 1:length(cohortDefinitions)) {
cohortJson <- cohortDefinitions[[i]]$cohortDefinition
cohortDefinitionSet <- rbind(cohortDefinitionSet, data.frame(
cohortId = as.integer(cohortDefinitions[[i]]$cohortId),
cohortName = cohortDefinitions[[i]]$cohortName,
json = cohortJson,
stringsAsFactors = FALSE
))
}
return(cohortDefinitionSet)
}
setCovariateSchemaTable <- function(
modelDesignList,
cohortDatabaseSchema,
cohortTable) {
if (inherits(modelDesignList, "modelDesign")) {
modelDesignList <- list(modelDesignList)
}
for (i in 1:length(modelDesignList)) {
covariateSettings <- modelDesignList[[i]]$covariateSettings
if (inherits(covariateSettings, "covariateSettings")) {
covariateSettings <- list(covariateSettings)
}
for (j in 1:length(covariateSettings)) {
if ("cohortDatabaseSchema" %in% names(covariateSettings[[j]])) {
covariateSettings[[j]]$cohortDatabaseSchema <- cohortDatabaseSchema
}
if ("cohortTable" %in% names(covariateSettings[[j]])) {
covariateSettings[[j]]$cohortTable <- cohortTable
}
}
modelDesignList[[i]]$covariateSettings <- covariateSettings
}
return(modelDesignList)
}
# Module methods -------------------------
execute <- function(jobContext) {
rlang::inform("Validating inputs")
inherits(jobContext, "list")
if (is.null(jobContext$settings)) {
stop("Analysis settings not found in job context")
}
if (is.null(jobContext$sharedResources)) {
stop("Shared resources not found in job context")
}
if (is.null(jobContext$moduleExecutionSettings)) {
stop("Execution settings not found in job context")
}
workFolder <- jobContext$moduleExecutionSettings$workSubFolder
resultsFolder <- jobContext$moduleExecutionSettings$resultsSubFolder
rlang::inform("Executing PLP")
moduleInfo <- getModuleInfo()
# Creating database details
databaseDetails <- PatientLevelPrediction::createDatabaseDetails(
connectionDetails = jobContext$moduleExecutionSettings$connectionDetails,
cdmDatabaseSchema = jobContext$moduleExecutionSettings$cdmDatabaseSchema,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cdmDatabaseName = jobContext$moduleExecutionSettings$connectionDetailsReference,
cdmDatabaseId = jobContext$moduleExecutionSettings$databaseId,
# tempEmulationSchema = , is there s temp schema specified anywhere?
cohortTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortTable,
outcomeDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
outcomeTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortTable
)
# find where cohortDefinitions are as sharedResources is a list
cohortDefinitionSet <- createCohortDefinitionSetFromJobContext(
sharedResources = jobContext$sharedResources,
settings = jobContext$settings
)
# set the covariate settings schema and tables
jobContext$settings <- setCovariateSchemaTable(
modelDesignList = jobContext$settings,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortTable
)
# run the models
PatientLevelPrediction::runMultiplePlp(
databaseDetails = databaseDetails,
modelDesignList = jobContext$settings,
cohortDefinitions = cohortDefinitionSet,
saveDirectory = workFolder
)
# Export the results
rlang::inform("Export data to csv files")
sqliteConnectionDetails <- DatabaseConnector::createConnectionDetails(
dbms = "sqlite",
server = file.path(workFolder, "sqlite", "databaseFile.sqlite")
)
PatientLevelPrediction::extractDatabaseToCsv(
connectionDetails = sqliteConnectionDetails,
databaseSchemaSettings = PatientLevelPrediction::createDatabaseSchemaSettings(
resultSchema = "main", # sqlite settings
tablePrefix = "", # sqlite settings
targetDialect = "sqlite",
tempEmulationSchema = NULL
),
csvFolder = file.path(resultsFolder),
fileAppend = NULL
)
}
uploadResultsCallback <- function(jobContext) {
connectionDetails <- jobContext$moduleExecutionSettings$resultsConnectionDetails
moduleInfo <- ParallelLogger::loadSettingsFromJson("MetaData.json")
tablePrefix <- moduleInfo$TablePrefix
schema <- jobContext$moduleExecutionSettings$resultsDatabaseSchema
resultsFolder <- jobContext$moduleExecutionSettings$resultsSubFolder
conn <- DatabaseConnector::connect(connectionDetails)
on.exit(DatabaseConnector::disconnect(conn))
databaseSchemaSettings <- PatientLevelPrediction::createDatabaseSchemaSettings(
resultSchema = schema,
tablePrefix = tablePrefix,
targetDialect = connectionDetails$dbms
)
PatientLevelPrediction::insertCsvToDatabase(
csvFolder = resultsFolder,
conn = conn,
databaseSchemaSettings = databaseSchemaSettings,
modelSaveLocation = file.path(resultsFolder, "dbmodels"),
csvTableAppend = ""
)
}
createDataModelSchema <- function(jobContext) {
connectionDetails <- jobContext$moduleExecutionSettings$resultsConnectionDetails
moduleInfo <- ParallelLogger::loadSettingsFromJson("MetaData.json")
tablePrefix <- moduleInfo$TablePrefix
schema <- jobContext$moduleExecutionSettings$resultsDatabaseSchema
# Workaround for issue https://github.com/tidyverse/vroom/issues/519:
readr::local_edition(1)
PatientLevelPrediction::createPlpResultTables(
connectionDetails = connectionDetails,
targetDialect = connectionDetails$dbms,
resultSchema = schema,
deleteTables = F,
createTables = T,
tablePrefix = tablePrefix
)
}