Skip to content

Commit

Permalink
Merge pull request #142 from ntalluri/header
Browse files Browse the repository at this point in the history
Adding Header Lines
  • Loading branch information
agitter authored Jul 10, 2024
2 parents 0557289 + d6b019a commit 98d7e35
Show file tree
Hide file tree
Showing 66 changed files with 214 additions and 90 deletions.
6 changes: 3 additions & 3 deletions .github/workflows/test-spras.yml
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ jobs:
docker pull reedcompbio/mincostflow:latest
docker pull reedcompbio/allpairs:v2
docker pull reedcompbio/domino:latest
docker pull reedcompbio/py4cytoscape:v2
docker pull reedcompbio/py4cytoscape:v3
docker pull reedcompbio/spras:v0.1.0
- name: Build Omics Integrator 1 Docker image
uses: docker/build-push-action@v1
Expand Down Expand Up @@ -154,8 +154,8 @@ jobs:
path: docker-wrappers/Cytoscape/.
dockerfile: docker-wrappers/Cytoscape/Dockerfile
repository: reedcompbio/py4cytoscape
tags: v2
cache_froms: reedcompbio/py4cytoscape:latest
tags: v3
cache_froms: reedcompbio/py4cytoscape:v3
push: false
- name: Build SPRAS Docker image
uses: docker/build-push-action@v1
Expand Down
7 changes: 4 additions & 3 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,9 +154,10 @@ Use the `run_container` utility function to run the command in the container `<u

Implement the `parse_output` function.
The edges in the Local Neighborhood output have the same format as the input, `<vertex1>|<vertex2>`.
Convert these to be tab-separated vertex pairs followed by a tab and a `1` at the end of every line, which indicates all edges have the same rank.
See the `add_rank_column` function in `src.util.py`.
The output should have the format `<vertex1> <vertex2> 1`.
Convert these to be tab-separated vertex pairs followed by a tab `1` and tab `U` at the end of every line, which indicates all edges have the same rank and are undirected.
See the `add_rank_column` and `raw_pathway_df` function in `src.util.py` and `reinsert_direction_col_undirected` function in `src.interactome.py`.
Make sure header = True with column names: ['Node1', 'Node2', 'Rank', 'Direction'] when the file is created.
The output should have the format `<vertex1> <vertex2> 1 U`.

### Step 4: Make the Local Neighborhood wrapper accessible through SPRAS
Import the new class `LocalNeighborhood` in `src/runner.py` so the wrapper functions can be accessed.
Expand Down
17 changes: 17 additions & 0 deletions doc/output.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
## File formats

### Pathway output format
Output pathway files in the standard SPRAS format include a header row and rows providing attributes for each edge.
The header row is `Node1 Node2 Rank Direction`.
Each row lists the two nodes that are connected with an edge, the rank for that edge, and a directionality column to indicate whether the edge is directed or undirected.
The directionality values are either a 'U' for an undirected edge or a 'D' for a directed edge, where the direction is from Node1 to Node2.
Pathways that do not contain ranked edges can output all 1s in the Rank column.

For example:
```
Node1 Node2 Rank Direction
A B 1 D
B C 1 D
B D 2 U
D A 3 U
```
1 change: 1 addition & 0 deletions docker-wrappers/Cytoscape/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ The Docker wrapper can be tested with `pytest`.
## Versions:
- v1: Use supervisord to launch Cytoscape from a Python subprocess, then connect to Cytoscape with py4cytoscape. Only loads undirected pathways. Compatible with Singularity in local testing (Apptainer version 1.2.2-1.el7) but fails in GitHub Actions.
- v2: Add support for edge direction column.
- v3: Add support for header lines in files

## TODO
- Add an auth file for `xvfb-run`
Expand Down
4 changes: 3 additions & 1 deletion docker-wrappers/Cytoscape/cytoscape_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,9 @@ def load_pathways(pathways: List[str], output: str) -> None:
suid = p4c.networks.import_network_from_tabular_file(
file=path,
column_type_list='s,t,x,ea',
delimiters='\t'
delimiters='\t',
first_row_as_column_names=True,

)
p4c.networks.rename_network(name, network=suid)

Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[project]
name = "spras"
version = "0.1.0"
version = "0.2.0"
description = "Signaling Pathway Reconstruction Analysis Streamliner"
authors = [
{ name = "Anthony Gitter", email = "[email protected]" },
Expand Down
13 changes: 7 additions & 6 deletions spras/allpairs.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,13 @@
import warnings
from pathlib import Path

import pandas as pd

from spras.containers import prepare_volume, run_container
from spras.interactome import (
convert_directed_to_undirected,
reinsert_direction_col_undirected,
)
from spras.prm import PRM
from spras.util import add_rank_column, raw_pathway_df

__all__ = ['AllPairs']

Expand Down Expand Up @@ -110,7 +109,9 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
@param raw_pathway_file: pathway file produced by an algorithm's run function
@param standardized_pathway_file: the same pathway written in the universal format
"""
df = pd.read_csv(raw_pathway_file, sep='\t', header=None)
df['Rank'] = 1 # add a rank column of 1s since the edges are not ranked.
df = reinsert_direction_col_undirected(df)
df.to_csv(standardized_pathway_file, header=False, index=False, sep='\t')
df = raw_pathway_df(raw_pathway_file, sep='\t', header=None)
if not df.empty:
df = add_rank_column(df)
df = reinsert_direction_col_undirected(df)
df.columns = ['Node1', 'Node2', 'Rank', 'Direction']
df.to_csv(standardized_pathway_file, header=True, index=False, sep='\t')
2 changes: 1 addition & 1 deletion spras/analysis/cytoscape.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def run_cytoscape(pathways: List[Union[str, PurePath]], output_file: str, contai

print('Running Cytoscape with arguments: {}'.format(' '.join(command)), flush=True)

container_suffix = "py4cytoscape:v2"
container_suffix = "py4cytoscape:v3"
out = run_container(container_framework,
container_suffix,
command,
Expand Down
8 changes: 4 additions & 4 deletions spras/analysis/graphspace.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,21 +77,21 @@ def load_graph(path: str) -> Tuple[Union[nx.Graph, nx.DiGraph], bool]:
directed = False

try:
pathways = pd.read_csv(path, sep="\t", header=None)
pathways = pd.read_csv(path, sep="\t", header=0)
except pd.errors.EmptyDataError:
print(f"The file {path} is empty.")
return G, directed
pathways.columns = ["Interactor1", "Interactor2", "Rank", "Direction"]

mask_u = pathways['Direction'] == 'U'
mask_d = pathways['Direction'] == 'D'
pathways.drop(columns=["Direction"])

if mask_u.all():
G = nx.from_pandas_edgelist(pathways, "Interactor1", "Interactor2", ["Rank"])
G = nx.from_pandas_edgelist(pathways, "Node1", "Node2", ["Rank"])
directed = False

elif mask_d.all():
G = nx.from_pandas_edgelist(pathways, "Interactor1", "Interactor2", ["Rank"], create_using=nx.DiGraph())
G = nx.from_pandas_edgelist(pathways, "Node1", "Node2", ["Rank"], create_using=nx.DiGraph())
directed = True
else:
print(f"{path} could not be visualized. GraphSpace does not support mixed direction type graphs currently")
Expand Down
11 changes: 8 additions & 3 deletions spras/analysis/ml.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,10 +41,13 @@ def summarize_networks(file_paths: Iterable[Union[str, PathLike]]) -> pd.DataFra
with open(file, 'r') as f:
lines = f.readlines()

if len(lines) > 0:
lines.pop(0) # skip header line

edges = []
for line in lines:
parts = line.split('\t')
if len(parts) > 0: # in case of empty line in file
if len(parts) == 4: # empty lines not allowed but empty files are allowed
node1 = parts[0]
node2 = parts[1]
direction = str(parts[3]).strip()
Expand All @@ -54,8 +57,10 @@ def summarize_networks(file_paths: Iterable[Union[str, PathLike]]) -> pd.DataFra
elif direction == "D":
# node order does matter for directed edges
edges.append(DIR_CONST.join([node1, node2]))
else:
ValueError(f"direction is {direction}, rather than U or D")
elif direction != 'Direction':
raise ValueError(f"direction is {direction}, rather than U or D")
elif len(parts) != 0:
raise ValueError(f"In file {file}, expected line {line} to have 4 values, but found {len(parts)} values.")

# getting the algorithm name
p = PurePath(file)
Expand Down
8 changes: 6 additions & 2 deletions spras/analysis/summary.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,12 @@ def summarize_networks(file_paths: Iterable[Path], node_table: pd.DataFrame) ->

# Iterate through each network file path
for file_path in sorted(file_paths):
# Load in the network
nw = nx.read_edgelist(file_path, data=(('weight', float), ('Direction',str)))

with open(file_path, 'r') as f:
lines = f.readlines()[1:] # skip the header line

nw = nx.read_edgelist(lines, data=(('weight', float), ('Direction', str)))

# Save the network name, number of nodes, number edges, and number of connected components
nw_name = str(file_path)
number_nodes = nw.number_of_nodes()
Expand Down
12 changes: 5 additions & 7 deletions spras/domino.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,8 +205,11 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
edges_df['source'] = edges_df['source'].apply(post_domino_id_transform)
edges_df['target'] = edges_df['target'].apply(post_domino_id_transform)
edges_df = reinsert_direction_col_undirected(edges_df)
edges_df.columns = ['Node1', 'Node2', 'Rank', 'Direction']
else:
edges_df = pd.DataFrame(columns=['Node1', 'Node2', 'Rank', 'Direction'])

edges_df.to_csv(standardized_pathway_file, sep='\t', header=False, index=False)
edges_df.to_csv(standardized_pathway_file, sep='\t', header=True, index=False)


def pre_domino_id_transform(node_id):
Expand All @@ -225,9 +228,4 @@ def post_domino_id_transform(node_id):
@param node_id: the node id to transform
@return the node id without the prefix, if it was present, otherwise the original node id
"""
# Use removeprefix if SPRAS ever requires Python >= 3.9
# https://docs.python.org/3/library/stdtypes.html#str.removeprefix
if node_id.startswith(ID_PREFIX):
return node_id[ID_PREFIX_LEN:]
else:
return node_id
return node_id.removeprefix(ID_PREFIX)
25 changes: 12 additions & 13 deletions spras/meo.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,12 @@
from pathlib import Path

import pandas as pd

from spras.containers import prepare_volume, run_container
from spras.interactome import (
add_directionality_constant,
reinsert_direction_col_directed,
)
from spras.prm import PRM
from spras.util import add_rank_column
from spras.util import add_rank_column, raw_pathway_df

__all__ = ['MEO', 'write_properties']

Expand Down Expand Up @@ -181,13 +179,14 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
@param standardized_pathway_file: the same pathway written in the universal format
"""
# Columns Source Type Target Oriented Weight
df = pd.read_csv(raw_pathway_file, sep='\t')
# Keep only edges that were assigned an orientation (direction)
df = df.loc[df['Oriented']]
# TODO what should be the edge rank?
# Would need to load the paths output file to rank edges correctly
df = add_rank_column(df)
df = reinsert_direction_col_directed(df)

df.to_csv(standardized_pathway_file, columns=['Source', 'Target', 'Rank', "Direction"], header=False,
index=False, sep='\t')
df = raw_pathway_df(raw_pathway_file, sep='\t', header=0)
if not df.empty:
# Keep only edges that were assigned an orientation (direction)
df = df.loc[df['Oriented']]
# TODO what should be the edge rank?
# Would need to load the paths output file to rank edges correctly
df = add_rank_column(df)
df = reinsert_direction_col_directed(df)
df.drop(columns=['Type', 'Oriented', 'Weight'], inplace=True)
df.columns = ['Node1', 'Node2', 'Rank', "Direction"]
df.to_csv(standardized_pathway_file, index=False, sep='\t', header=True)
19 changes: 9 additions & 10 deletions spras/mincostflow.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,12 @@
from pathlib import Path

import pandas as pd

from spras.containers import prepare_volume, run_container
from spras.interactome import (
convert_undirected_to_directed,
reinsert_direction_col_undirected,
)
from spras.prm import PRM
from spras.util import add_rank_column
from spras.util import add_rank_column, raw_pathway_df

__all__ = ['MinCostFlow']

Expand Down Expand Up @@ -150,10 +148,11 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
@param standardized_pathway_file: the same pathway written in the universal format
"""

df = pd.read_csv(raw_pathway_file, sep='\t', header=None)
df = add_rank_column(df)
# TODO update MinCostFlow version to support mixed graphs
# Currently directed edges in the input will be converted to undirected edges in the output
df = reinsert_direction_col_undirected(df)
df.to_csv(standardized_pathway_file, header=False, index=False, sep='\t')

df = raw_pathway_df(raw_pathway_file, sep='\t', header=None)
if not df.empty:
df = add_rank_column(df)
# TODO update MinCostFlow version to support mixed graphs
# Currently directed edges in the input will be converted to undirected edges in the output
df = reinsert_direction_col_undirected(df)
df.columns = ['Node1', 'Node2', 'Rank', "Direction"]
df.to_csv(standardized_pathway_file, header=True, index=False, sep='\t')
26 changes: 10 additions & 16 deletions spras/omicsintegrator1.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,9 @@
from pathlib import Path

import pandas as pd

from spras.containers import prepare_volume, run_container
from spras.interactome import reinsert_direction_col_mixed
from spras.prm import PRM
from spras.util import add_rank_column
from spras.util import add_rank_column, raw_pathway_df

__all__ = ['OmicsIntegrator1', 'write_conf']

Expand Down Expand Up @@ -191,16 +189,12 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
# I'm assuming from having read the documentation that we will be passing in optimalForest.sif
# as raw_pathway_file, in which case the format should be edge1 interactiontype edge2.
# if that assumption is wrong we will need to tweak things
try:
df = pd.read_csv(raw_pathway_file, sep='\t', header=None)
except pd.errors.EmptyDataError:
with open(standardized_pathway_file, 'w'):
pass
return

df.columns = ["Edge1", "InteractionType", "Edge2"]
df = add_rank_column(df)
df = reinsert_direction_col_mixed(df, "InteractionType", "pd", "pp")

df.to_csv(standardized_pathway_file, columns=['Edge1', 'Edge2', 'Rank', "Direction"], header=False, index=False,
sep='\t')
df = raw_pathway_df(raw_pathway_file, sep='\t', header=None)
if not df.empty:
df.columns = ["Edge1", "InteractionType", "Edge2"]
df = add_rank_column(df)
df = reinsert_direction_col_mixed(df, "InteractionType", "pd", "pp")
df.drop(columns=['InteractionType'], inplace=True)
df.columns = ['Node1', 'Node2', 'Rank', 'Direction']

df.to_csv(standardized_pathway_file, header=True, index=False, sep='\t')
19 changes: 10 additions & 9 deletions spras/omicsintegrator2.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,12 +149,13 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
# Omicsintegrator2 returns a single line file if no network is found
num_lines = sum(1 for line in open(raw_pathway_file))
if num_lines < 2:
with open(standardized_pathway_file, 'w'):
pass
return
df = pd.read_csv(raw_pathway_file, sep='\t')
df = df[df['in_solution'] == True] # Check whether this column can be empty before revising this line
df = df.take([0, 1], axis=1)
df = add_rank_column(df)
df = reinsert_direction_col_undirected(df)
df.to_csv(standardized_pathway_file, header=False, index=False, sep='\t')
df = pd.DataFrame(columns=['Node1', 'Node2', 'Rank', 'Direction'])
else:
df = pd.read_csv(raw_pathway_file, sep='\t', header=0)
df = df[df['in_solution'] == True] # Check whether this column can be empty before revising this line
df = df.take([0, 1], axis=1)
df = add_rank_column(df)
df = reinsert_direction_col_undirected(df)
df.columns = ['Node1', 'Node2', 'Rank', "Direction"]

df.to_csv(standardized_pathway_file, header=True, index=False, sep='\t')
14 changes: 8 additions & 6 deletions spras/pathlinker.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,13 @@
import warnings
from pathlib import Path

import pandas as pd

from spras.containers import prepare_volume, run_container
from spras.interactome import (
convert_undirected_to_directed,
reinsert_direction_col_directed,
)
from spras.prm import PRM
from spras.util import raw_pathway_df

__all__ = ['PathLinker']

Expand Down Expand Up @@ -136,7 +135,10 @@ def parse_output(raw_pathway_file, standardized_pathway_file):
@param raw_pathway_file: pathway file produced by an algorithm's run function
@param standardized_pathway_file: the same pathway written in the universal format
"""
# What about multiple raw_pathway_files
df = pd.read_csv(raw_pathway_file, sep='\t').take([0, 1, 2], axis=1)
df = reinsert_direction_col_directed(df)
df.to_csv(standardized_pathway_file, header=False, index=False, sep='\t')
# What about multiple raw_pathway_files?
df = raw_pathway_df(raw_pathway_file, sep='\t', header=0)
if not df.empty:
df = df.take([0, 1, 2], axis=1)
df = reinsert_direction_col_directed(df)
df.columns = ['Node1', 'Node2', 'Rank', "Direction"]
df.to_csv(standardized_pathway_file, header=True, index=False, sep='\t')
Loading

0 comments on commit 98d7e35

Please sign in to comment.