-
Notifications
You must be signed in to change notification settings - Fork 61
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,705 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
import hypothesis | ||
import hypothesis.strategies as st | ||
import pytest | ||
|
||
import gymnasium | ||
|
||
import optax | ||
|
||
from skrl.agents.jax.a2c import A2C as Agent | ||
from skrl.agents.jax.a2c import A2C_DEFAULT_CONFIG as DEFAULT_CONFIG | ||
from skrl.envs.wrappers.jax import wrap_env | ||
from skrl.memories.jax import RandomMemory | ||
from skrl.resources.preprocessors.jax import RunningStandardScaler | ||
from skrl.resources.schedulers.jax import KLAdaptiveLR | ||
from skrl.trainers.jax import SequentialTrainer | ||
from skrl.utils.model_instantiators.jax import categorical_model, deterministic_model, gaussian_model | ||
from skrl.utils.spaces.jax import sample_space | ||
|
||
from ..utils import BaseEnv | ||
|
||
|
||
class Env(BaseEnv): | ||
def _sample_observation(self): | ||
return sample_space(self.observation_space, self.num_envs, backend="numpy") | ||
|
||
|
||
def _check_agent_config(config, default_config): | ||
for k in config.keys(): | ||
assert k in default_config | ||
for k in default_config.keys(): | ||
assert k in config | ||
|
||
|
||
@hypothesis.given( | ||
num_envs=st.integers(min_value=1, max_value=5), | ||
rollouts=st.integers(min_value=1, max_value=5), | ||
mini_batches=st.integers(min_value=1, max_value=5), | ||
discount_factor=st.floats(min_value=0, max_value=1), | ||
lambda_=st.floats(min_value=0, max_value=1), | ||
learning_rate=st.floats(min_value=1.0e-10, max_value=1), | ||
learning_rate_scheduler=st.one_of(st.none(), st.just(KLAdaptiveLR), st.just(optax.schedules.constant_schedule)), | ||
learning_rate_scheduler_kwargs_value=st.floats(min_value=0.1, max_value=1), | ||
state_preprocessor=st.one_of(st.none(), st.just(RunningStandardScaler)), | ||
value_preprocessor=st.one_of(st.none(), st.just(RunningStandardScaler)), | ||
random_timesteps=st.just(0), | ||
learning_starts=st.just(0), | ||
grad_norm_clip=st.floats(min_value=0, max_value=1), | ||
entropy_loss_scale=st.floats(min_value=0, max_value=1), | ||
rewards_shaper=st.one_of(st.none(), st.just(lambda rewards, *args, **kwargs: 0.5 * rewards)), | ||
time_limit_bootstrap=st.booleans(), | ||
) | ||
@hypothesis.settings(suppress_health_check=[hypothesis.HealthCheck.function_scoped_fixture], deadline=None) | ||
@pytest.mark.parametrize("device", ["cpu", "cuda:0"]) | ||
@pytest.mark.parametrize("separate", [True]) | ||
@pytest.mark.parametrize("policy_structure", ["GaussianMixin", "CategoricalMixin"]) | ||
def test_agent( | ||
capsys, | ||
device, | ||
num_envs, | ||
# model config | ||
separate, | ||
policy_structure, | ||
# agent config | ||
rollouts, | ||
mini_batches, | ||
discount_factor, | ||
lambda_, | ||
learning_rate, | ||
learning_rate_scheduler, | ||
learning_rate_scheduler_kwargs_value, | ||
state_preprocessor, | ||
value_preprocessor, | ||
random_timesteps, | ||
learning_starts, | ||
grad_norm_clip, | ||
entropy_loss_scale, | ||
rewards_shaper, | ||
time_limit_bootstrap, | ||
): | ||
# spaces | ||
observation_space = gymnasium.spaces.Box(low=-1, high=1, shape=(5,)) | ||
if policy_structure in ["GaussianMixin"]: | ||
action_space = gymnasium.spaces.Box(low=-1, high=1, shape=(3,)) | ||
elif policy_structure == "CategoricalMixin": | ||
action_space = gymnasium.spaces.Discrete(3) | ||
|
||
# env | ||
env = wrap_env(Env(observation_space, action_space, num_envs, device), wrapper="gymnasium") | ||
|
||
# models | ||
network = [ | ||
{ | ||
"name": "net", | ||
"input": "STATES", | ||
"layers": [64, 64], | ||
"activations": "elu", | ||
} | ||
] | ||
models = {} | ||
if separate: | ||
if policy_structure == "GaussianMixin": | ||
models["policy"] = gaussian_model( | ||
observation_space=env.observation_space, | ||
action_space=env.action_space, | ||
device=env.device, | ||
network=network, | ||
output="ACTIONS", | ||
) | ||
elif policy_structure == "CategoricalMixin": | ||
models["policy"] = categorical_model( | ||
observation_space=env.observation_space, | ||
action_space=env.action_space, | ||
device=env.device, | ||
network=network, | ||
output="ACTIONS", | ||
) | ||
models["value"] = deterministic_model( | ||
observation_space=env.observation_space, | ||
action_space=env.action_space, | ||
device=env.device, | ||
network=network, | ||
output="ONE", | ||
) | ||
else: | ||
raise NotImplementedError | ||
# instantiate models' state dict | ||
for role, model in models.items(): | ||
model.init_state_dict(role) | ||
|
||
# memory | ||
memory = RandomMemory(memory_size=rollouts, num_envs=env.num_envs, device=env.device) | ||
|
||
# agent | ||
cfg = { | ||
"rollouts": rollouts, | ||
"mini_batches": mini_batches, | ||
"discount_factor": discount_factor, | ||
"lambda": lambda_, | ||
"learning_rate": learning_rate, | ||
"learning_rate_scheduler": learning_rate_scheduler, | ||
"learning_rate_scheduler_kwargs": {}, | ||
"state_preprocessor": state_preprocessor, | ||
"state_preprocessor_kwargs": {"size": env.observation_space, "device": env.device}, | ||
"value_preprocessor": value_preprocessor, | ||
"value_preprocessor_kwargs": {"size": 1, "device": env.device}, | ||
"random_timesteps": random_timesteps, | ||
"learning_starts": learning_starts, | ||
"grad_norm_clip": grad_norm_clip, | ||
"entropy_loss_scale": entropy_loss_scale, | ||
"rewards_shaper": rewards_shaper, | ||
"time_limit_bootstrap": time_limit_bootstrap, | ||
"experiment": { | ||
"directory": "", | ||
"experiment_name": "", | ||
"write_interval": 0, | ||
"checkpoint_interval": 0, | ||
"store_separately": False, | ||
"wandb": False, | ||
"wandb_kwargs": {}, | ||
}, | ||
} | ||
cfg["learning_rate_scheduler_kwargs"][ | ||
"kl_threshold" if learning_rate_scheduler is KLAdaptiveLR else "value" | ||
] = learning_rate_scheduler_kwargs_value | ||
_check_agent_config(cfg, DEFAULT_CONFIG) | ||
_check_agent_config(cfg["experiment"], DEFAULT_CONFIG["experiment"]) | ||
agent = Agent( | ||
models=models, | ||
memory=memory, | ||
cfg=cfg, | ||
observation_space=env.observation_space, | ||
action_space=env.action_space, | ||
device=env.device, | ||
) | ||
|
||
# trainer | ||
cfg_trainer = { | ||
"timesteps": int(5 * rollouts), | ||
"headless": True, | ||
"disable_progressbar": True, | ||
"close_environment_at_exit": False, | ||
} | ||
trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) | ||
|
||
trainer.train() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
import hypothesis | ||
import hypothesis.strategies as st | ||
import pytest | ||
|
||
import gymnasium | ||
|
||
import optax | ||
|
||
from skrl.agents.jax.cem import CEM as Agent | ||
from skrl.agents.jax.cem import CEM_DEFAULT_CONFIG as DEFAULT_CONFIG | ||
from skrl.envs.wrappers.jax import wrap_env | ||
from skrl.memories.jax import RandomMemory | ||
from skrl.resources.preprocessors.jax import RunningStandardScaler | ||
from skrl.resources.schedulers.jax import KLAdaptiveLR | ||
from skrl.trainers.jax import SequentialTrainer | ||
from skrl.utils.model_instantiators.jax import categorical_model | ||
from skrl.utils.spaces.jax import sample_space | ||
|
||
from ..utils import BaseEnv | ||
|
||
|
||
class Env(BaseEnv): | ||
def _sample_observation(self): | ||
return sample_space(self.observation_space, self.num_envs, backend="numpy") | ||
|
||
|
||
def _check_agent_config(config, default_config): | ||
for k in config.keys(): | ||
assert k in default_config | ||
for k in default_config.keys(): | ||
assert k in config | ||
|
||
|
||
@hypothesis.given( | ||
num_envs=st.integers(min_value=1, max_value=5), | ||
rollouts=st.integers(min_value=1, max_value=5), | ||
percentile=st.floats(min_value=0, max_value=1), | ||
discount_factor=st.floats(min_value=0, max_value=1), | ||
learning_rate=st.floats(min_value=1.0e-10, max_value=1), | ||
learning_rate_scheduler=st.one_of(st.none(), st.just(KLAdaptiveLR), st.just(optax.schedules.constant_schedule)), | ||
learning_rate_scheduler_kwargs_value=st.floats(min_value=0.1, max_value=1), | ||
state_preprocessor=st.one_of(st.none(), st.just(RunningStandardScaler)), | ||
random_timesteps=st.just(0), | ||
learning_starts=st.just(0), | ||
rewards_shaper=st.one_of(st.none(), st.just(lambda rewards, *args, **kwargs: 0.5 * rewards)), | ||
) | ||
@hypothesis.settings(suppress_health_check=[hypothesis.HealthCheck.function_scoped_fixture], deadline=None) | ||
@pytest.mark.parametrize("device", ["cpu", "cuda:0"]) | ||
def test_agent( | ||
capsys, | ||
device, | ||
num_envs, | ||
# agent config | ||
rollouts, | ||
percentile, | ||
discount_factor, | ||
learning_rate, | ||
learning_rate_scheduler, | ||
learning_rate_scheduler_kwargs_value, | ||
state_preprocessor, | ||
random_timesteps, | ||
learning_starts, | ||
rewards_shaper, | ||
): | ||
# spaces | ||
observation_space = gymnasium.spaces.Box(low=-1, high=1, shape=(5,)) | ||
action_space = gymnasium.spaces.Discrete(3) | ||
|
||
# env | ||
env = wrap_env(Env(observation_space, action_space, num_envs, device), wrapper="gymnasium") | ||
|
||
# models | ||
network = [ | ||
{ | ||
"name": "net", | ||
"input": "STATES", | ||
"layers": [64, 64], | ||
"activations": "elu", | ||
} | ||
] | ||
models = {} | ||
models["policy"] = categorical_model( | ||
observation_space=env.observation_space, | ||
action_space=env.action_space, | ||
device=env.device, | ||
network=network, | ||
output="ACTIONS", | ||
) | ||
# instantiate models' state dict | ||
for role, model in models.items(): | ||
model.init_state_dict(role) | ||
|
||
# memory | ||
memory = RandomMemory(memory_size=rollouts, num_envs=env.num_envs, device=env.device) | ||
|
||
# agent | ||
cfg = { | ||
"rollouts": rollouts, | ||
"percentile": percentile, | ||
"discount_factor": discount_factor, | ||
"learning_rate": learning_rate, | ||
"learning_rate_scheduler": learning_rate_scheduler, | ||
"learning_rate_scheduler_kwargs": {}, | ||
"state_preprocessor": state_preprocessor, | ||
"state_preprocessor_kwargs": {"size": env.observation_space, "device": env.device}, | ||
"random_timesteps": random_timesteps, | ||
"learning_starts": learning_starts, | ||
"rewards_shaper": rewards_shaper, | ||
"experiment": { | ||
"directory": "", | ||
"experiment_name": "", | ||
"write_interval": 0, | ||
"checkpoint_interval": 0, | ||
"store_separately": False, | ||
"wandb": False, | ||
"wandb_kwargs": {}, | ||
}, | ||
} | ||
cfg["learning_rate_scheduler_kwargs"][ | ||
"kl_threshold" if learning_rate_scheduler is KLAdaptiveLR else "value" | ||
] = learning_rate_scheduler_kwargs_value | ||
_check_agent_config(cfg, DEFAULT_CONFIG) | ||
_check_agent_config(cfg["experiment"], DEFAULT_CONFIG["experiment"]) | ||
agent = Agent( | ||
models=models, | ||
memory=memory, | ||
cfg=cfg, | ||
observation_space=env.observation_space, | ||
action_space=env.action_space, | ||
device=env.device, | ||
) | ||
|
||
# trainer | ||
cfg_trainer = { | ||
"timesteps": int(5 * rollouts), | ||
"headless": True, | ||
"disable_progressbar": True, | ||
"close_environment_at_exit": False, | ||
} | ||
trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) | ||
|
||
trainer.train() |
Oops, something went wrong.