-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
16 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# MEND_qc_survey | ||
|
||
This code analyzes the composition of RNA-Seq datasets generated from 2179 tumors in 48 cohorts by counting the Mapped, Exonic, Non-duplicate (MEND) reads. It generates the figures and calculations reported in https://doi.org/10.1101/716829v1. The abstract for the manuscript follows. | ||
|
||
|
||
## Background | ||
|
||
The accuracy of gene expression as measured by RNA sequencing (RNA-Seq) is dependent on the amount of sequencing performed. However, some types of reads are not informative for determining this accuracy. Unmapped and non-exonic reads do not contribute to gene expression quantification. Duplicate reads can be the product of high gene expression or technical errors. | ||
|
||
## Findings | ||
|
||
We surveyed bulk RNA-Seq datasets from 2179 tumors in 48 cohorts to determine the fractions of uninformative reads. Total sequence depth was 0.2-668 million reads (median (med.) 61 million; interquartile range (IQR) 53 million). Unmapped reads constitute 1-77% of all reads (med. 3%; IQR 3%); duplicate reads constitute 3-100% of mapped reads (med. 27%; IQR 30%); and non-exonic reads constitute 4-97% of mapped, non-duplicate reads (med. 25%; IQR 21%). Informative reads--Mapped, Exonic, Non-duplicate (MEND) reads--constitute 0-79% of total reads (med. 50%; IQR 31%). Further, we find that MEND read counts have a 0.22 Pearson correlation to the number of genes expressed above 1 Transcript Per Million, while total reads have a correlation of -0.05. | ||
|
||
## Conclusions | ||
|
||
Since the fraction of uninformative reads vary, we propose using only definitively informative reads, MEND reads, for the purposes of asserting the accuracy of gene expression measured in a bulk RNA-Seq experiment. We provide a Docker image containing 1) the existing required tools (RSeQC, sambamba and samblaster) and 2) a custom script. We recommend that all results, sensitivity studies and depth recommendations use MEND units. |