Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GH-36412: [Python][CI] Fix extra deprecation warnings in the pandas nightly build #39609

Merged
merged 16 commits into from
Jan 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 2 additions & 13 deletions python/pyarrow/pandas_compat.py
Original file line number Diff line number Diff line change
Expand Up @@ -967,20 +967,9 @@ def _extract_index_level(table, result_table, field_name,
# The serialized index column was removed by the user
return result_table, None, None

pd = _pandas_api.pd

col = table.column(i)
values = col.to_pandas(types_mapper=types_mapper).values

if hasattr(values, 'flags') and not values.flags.writeable:
# ARROW-1054: in pandas 0.19.2, factorize will reject
# non-writeable arrays when calling MultiIndex.from_arrays
values = values.copy()

if isinstance(col.type, pa.lib.TimestampType) and col.type.tz is not None:
index_level = make_tz_aware(pd.Series(values, copy=False), col.type.tz)
else:
index_level = pd.Series(values, dtype=values.dtype, copy=False)
index_level = col.to_pandas(types_mapper=types_mapper)
index_level.name = None
result_table = result_table.remove_column(
result_table.schema.get_field_index(field_name)
)
Expand Down
4 changes: 2 additions & 2 deletions python/pyarrow/tests/parquet/test_datetime.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ def test_coerce_timestamps(tempdir):
df_expected = df.copy()
for i, x in enumerate(df_expected['datetime64']):
if isinstance(x, np.ndarray):
df_expected['datetime64'][i] = x.astype('M8[us]')
df_expected.loc[i, 'datetime64'] = x.astype('M8[us]')

tm.assert_frame_equal(df_expected, df_read)

Expand Down Expand Up @@ -429,7 +429,7 @@ def test_noncoerced_nanoseconds_written_without_exception(tempdir):
# nanosecond timestamps by default
n = 9
df = pd.DataFrame({'x': range(n)},
index=pd.date_range('2017-01-01', freq='1n', periods=n))
index=pd.date_range('2017-01-01', freq='ns', periods=n))
tb = pa.Table.from_pandas(df)

filename = tempdir / 'written.parquet'
Expand Down
6 changes: 3 additions & 3 deletions python/pyarrow/tests/test_compute.py
Original file line number Diff line number Diff line change
Expand Up @@ -2360,18 +2360,18 @@ def _check_temporal_rounding(ts, values, unit):
unit_shorthand = {
"nanosecond": "ns",
"microsecond": "us",
"millisecond": "L",
"millisecond": "ms",
"second": "s",
"minute": "min",
"hour": "H",
"hour": "h",
"day": "D"
}
greater_unit = {
"nanosecond": "us",
"microsecond": "ms",
"millisecond": "s",
"second": "min",
"minute": "H",
"minute": "h",
"hour": "d",
}
ta = pa.array(ts)
Expand Down
6 changes: 4 additions & 2 deletions python/pyarrow/tests/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,12 +178,14 @@ def multisourcefs(request):

# simply split the dataframe into four chunks to construct a data source
# from each chunk into its own directory
df_a, df_b, df_c, df_d = np.array_split(df, 4)
n = len(df)
df_a, df_b, df_c, df_d = [df.iloc[i:i+n//4] for i in range(0, n, n//4)]

# create a directory containing a flat sequence of parquet files without
# any partitioning involved
mockfs.create_dir('plain')
for i, chunk in enumerate(np.array_split(df_a, 10)):
n = len(df_a)
for i, chunk in enumerate([df_a.iloc[i:i+n//10] for i in range(0, n, n//10)]):
path = 'plain/chunk-{}.parquet'.format(i)
with mockfs.open_output_stream(path) as out:
pq.write_table(_table_from_pandas(chunk), out)
Expand Down
42 changes: 24 additions & 18 deletions python/pyarrow/tests/test_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,10 @@ def _check_pandas_roundtrip(df, expected=None, use_threads=False,
if expected is None:
expected = df

for col in expected.columns:
if expected[col].dtype == 'object':
expected[col] = expected[col].replace({np.nan: None})

with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "elementwise comparison failed", DeprecationWarning)
Expand Down Expand Up @@ -152,6 +156,9 @@ def _check_array_roundtrip(values, expected=None, mask=None,
expected = pd.Series(values).copy()
expected[mask.copy()] = None

if expected.dtype == 'object':
expected = expected.replace({np.nan: None})

tm.assert_series_equal(pd.Series(result), expected, check_names=False)


Expand Down Expand Up @@ -478,7 +485,7 @@ def test_mixed_column_names(self):
preserve_index=True)

def test_binary_column_name(self):
if Version("2.0.0") <= Version(pd.__version__) < Version("2.3.0"):
if Version("2.0.0") <= Version(pd.__version__) < Version("3.0.0"):
# TODO: regression in pandas, hopefully fixed in next version
# https://issues.apache.org/jira/browse/ARROW-18394
# https://github.com/pandas-dev/pandas/issues/50127
Expand Down Expand Up @@ -3108,7 +3115,7 @@ def _fully_loaded_dataframe_example():

@pytest.mark.parametrize('columns', ([b'foo'], ['foo']))
def test_roundtrip_with_bytes_unicode(columns):
if Version("2.0.0") <= Version(pd.__version__) < Version("2.3.0"):
if Version("2.0.0") <= Version(pd.__version__) < Version("3.0.0"):
# TODO: regression in pandas, hopefully fixed in next version
# https://issues.apache.org/jira/browse/ARROW-18394
# https://github.com/pandas-dev/pandas/issues/50127
Expand Down Expand Up @@ -3491,7 +3498,7 @@ def test_table_from_pandas_schema_field_order_metadata():
# ensure that a different field order in specified schema doesn't
# mangle metadata
df = pd.DataFrame({
"datetime": pd.date_range("2020-01-01T00:00:00Z", freq="H", periods=2),
"datetime": pd.date_range("2020-01-01T00:00:00Z", freq="h", periods=2),
"float": np.random.randn(2)
})

Expand Down Expand Up @@ -4181,8 +4188,6 @@ def _Int64Dtype__from_arrow__(self, array):


def test_convert_to_extension_array(monkeypatch):
import pandas.core.internals as _int

# table converted from dataframe with extension types (so pandas_metadata
# has this information)
df = pd.DataFrame(
Expand All @@ -4193,16 +4198,15 @@ def test_convert_to_extension_array(monkeypatch):
# Int64Dtype is recognized -> convert to extension block by default
# for a proper roundtrip
result = table.to_pandas()
assert not isinstance(_get_mgr(result).blocks[0], _int.ExtensionBlock)
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64")
assert isinstance(_get_mgr(result).blocks[1], _int.ExtensionBlock)
assert _get_mgr(result).blocks[1].values.dtype == pd.Int64Dtype()
tm.assert_frame_equal(result, df)

# test with missing values
df2 = pd.DataFrame({'a': pd.array([1, 2, None], dtype='Int64')})
table2 = pa.table(df2)
result = table2.to_pandas()
assert isinstance(_get_mgr(result).blocks[0], _int.ExtensionBlock)
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype()
tm.assert_frame_equal(result, df2)

# monkeypatch pandas Int64Dtype to *not* have the protocol method
Expand All @@ -4215,7 +4219,7 @@ def test_convert_to_extension_array(monkeypatch):
# Int64Dtype has no __from_arrow__ -> use normal conversion
result = table.to_pandas()
assert len(_get_mgr(result).blocks) == 1
assert not isinstance(_get_mgr(result).blocks[0], _int.ExtensionBlock)
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64")


class MyCustomIntegerType(pa.ExtensionType):
Expand All @@ -4233,21 +4237,19 @@ def to_pandas_dtype(self):

def test_conversion_extensiontype_to_extensionarray(monkeypatch):
# converting extension type to linked pandas ExtensionDtype/Array
import pandas.core.internals as _int

storage = pa.array([1, 2, 3, 4], pa.int64())
arr = pa.ExtensionArray.from_storage(MyCustomIntegerType(), storage)
table = pa.table({'a': arr})

# extension type points to Int64Dtype, which knows how to create a
# pandas ExtensionArray
result = arr.to_pandas()
assert isinstance(_get_mgr(result).blocks[0], _int.ExtensionBlock)
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype()
expected = pd.Series([1, 2, 3, 4], dtype='Int64')
tm.assert_series_equal(result, expected)

result = table.to_pandas()
assert isinstance(_get_mgr(result).blocks[0], _int.ExtensionBlock)
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype()
expected = pd.DataFrame({'a': pd.array([1, 2, 3, 4], dtype='Int64')})
tm.assert_frame_equal(result, expected)

Expand All @@ -4261,7 +4263,7 @@ def test_conversion_extensiontype_to_extensionarray(monkeypatch):
pd.core.arrays.integer.NumericDtype, "__from_arrow__")

result = arr.to_pandas()
assert not isinstance(_get_mgr(result).blocks[0], _int.ExtensionBlock)
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64")
expected = pd.Series([1, 2, 3, 4])
tm.assert_series_equal(result, expected)

Expand Down Expand Up @@ -4312,10 +4314,14 @@ def test_array_to_pandas():
def test_roundtrip_empty_table_with_extension_dtype_index():
df = pd.DataFrame(index=pd.interval_range(start=0, end=3))
table = pa.table(df)
table.to_pandas().index == pd.Index([{'left': 0, 'right': 1},
{'left': 1, 'right': 2},
{'left': 2, 'right': 3}],
dtype='object')
if Version(pd.__version__) > Version("1.0"):
tm.assert_index_equal(table.to_pandas().index, df.index)
else:
tm.assert_index_equal(table.to_pandas().index,
pd.Index([{'left': 0, 'right': 1},
{'left': 1, 'right': 2},
{'left': 2, 'right': 3}],
dtype='object'))


@pytest.mark.parametrize("index", ["a", ["a", "b"]])
Expand Down