-
-
Notifications
You must be signed in to change notification settings - Fork 927
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
WIP: galore optimizer #1370
WIP: galore optimizer #1370
Conversation
@maximegmd any chance you could provide an example config file on how to use this? |
Set the |
Hi ! import torch
import datasets
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
import trl
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-galore",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw",
galore_target_modules=["attn", "mlp"],
gradient_checkpointing=True,
)
# model_id = "mistralai/Mistral-7B-v0.1"
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train() |
Got it working on Gemma-2b ! import torch
import datasets
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
import trl
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-galore-new",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw",
galore_target_modules=["attn", "mlp"],
gradient_checkpointing=True,
logging_strategy="steps",
logging_steps=5,
learning_rate=2e-3,
save_strategy="no",
run_name="galore-imdb"
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train() After ~50 steps: {'loss': 11.8705, 'grad_norm': 13.43569564819336, 'learning_rate': 0.0019, 'epoch': 0.0}
{'loss': 9.8208, 'grad_norm': 7.467105865478516, 'learning_rate': 0.0018000000000000002, 'epoch': 0.0}
{'loss': 8.606, 'grad_norm': 6.2992963790893555, 'learning_rate': 0.0017, 'epoch': 0.0}
{'loss': 7.8436, 'grad_norm': 5.3465986251831055, 'learning_rate': 0.0016, 'epoch': 0.0}
{'loss': 7.6177, 'grad_norm': 6.2392964363098145, 'learning_rate': 0.0015, 'epoch': 0.0}
{'loss': 7.5346, 'grad_norm': 4.487287998199463, 'learning_rate': 0.0014, 'epoch': 0.0}
{'loss': 7.6909, 'grad_norm': 4.615128517150879, 'learning_rate': 0.0013000000000000002, 'epoch': 0.0}
{'loss': 7.0826, 'grad_norm': 5.807451248168945, 'learning_rate': 0.0012, 'epoch': 0.0}
{'loss': 7.1936, 'grad_norm': 3.470165729522705, 'learning_rate': 0.0011, 'epoch': 0.0}
{'loss': 7.1926, 'grad_norm': 4.511063575744629, 'learning_rate': 0.001, 'epoch': 0.0} Using a single A100 80GB, the loss seems to converge nicely. It is expected that at init the optimizer takes some time to initialize itself |
@younesbelkada I tried your gemma code and faced the following error: |
Thanks @younesbelkada! I'll open up another PR with just the validation and training args pieces and wait for the upstream integration. Much appreciated! |
thanks so much @winglian ! |
Superseded by #1409. Thanks for getting this rolling @maximegmd. Props to @younesbelkada for getting this working upstream in transformers. |
Adds support for Galore optimizers
Still a WIP, untested.