-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add example of a discrete-continuous mixture (#125)
- Loading branch information
1 parent
dc6100d
commit 8d4800f
Showing
1 changed file
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
"""Distribution with continuous two-dimensional X and binary Y.""" | ||
import json | ||
from jax import config | ||
config.update("jax_enable_x64", True) | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
|
||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
matplotlib.use('Agg') | ||
import numpy as np | ||
|
||
import bmi | ||
from bmi.samplers import fine | ||
|
||
from tensorflow_probability.substrates import jax as tfp | ||
tfd = tfp.distributions | ||
|
||
|
||
# === WORKDIR === | ||
workdir: "generated/mixtures/discrete_continuous/" | ||
|
||
|
||
def construct_bernoulli(p: float, dtype=jnp.float64) -> tfd.Distribution: | ||
"""Constructs a Bernoulli distribution, as | ||
TensorFlow Probability disallows products of continuous | ||
and discrete distributions.""" | ||
return tfd.Independent( | ||
tfd.Bernoulli(probs=jnp.asarray([p], dtype=dtype), dtype=dtype), | ||
reinterpreted_batch_ndims=1, | ||
) | ||
|
||
|
||
def define_distribution(): | ||
"""Defines the joint distribution P(X, Y).""" | ||
# Define the distributions for X_k | ||
x1 = fine.construct_multivariate_student_distribution( | ||
mean=-jnp.ones(2), | ||
dispersion=0.2 * jnp.eye(2), | ||
df=8, | ||
) | ||
x2 = fine.construct_multivariate_normal_distribution( | ||
mean=jnp.zeros(2), | ||
covariance=0.1 * bmi.samplers.canonical_correlation([0.95]), | ||
) | ||
x3 = fine.construct_multivariate_student_distribution( | ||
mean=jnp.ones(2), | ||
dispersion=0.2 * jnp.eye(2), | ||
df=5, | ||
) | ||
|
||
# Define the distributions for Y_k | ||
y1 = construct_bernoulli(0.95) | ||
y2 = construct_bernoulli(0.5) | ||
y3 = construct_bernoulli(0.05) | ||
|
||
# Define the mixture distribution | ||
components = [ | ||
fine.ProductDistribution(dist_x, dist_y) | ||
for dist_x, dist_y in zip([x1, x2, x3], [y1, y2, y3]) | ||
] | ||
connect_prob = 0.5 | ||
bulk_prob = 0.5 * (1 - connect_prob) | ||
joint_distribution = fine.mixture(proportions=[bulk_prob, connect_prob, bulk_prob], components=components) | ||
|
||
return joint_distribution | ||
|
||
rule all: | ||
input: | ||
"estimate.json", | ||
"figure_discrete_continuous_example.pdf" | ||
|
||
|
||
rule estimate_mi: | ||
output: "estimate.json" | ||
run: | ||
key = jax.random.PRNGKey(121) | ||
mi, mi_std_err = fine.monte_carlo_mi_estimate(key, dist=define_distribution(), n=1_000_000) | ||
with open(output[0], "w") as fp: | ||
json.dump({"estimate": float(mi), "std_err": float(mi_std_err)}, fp=fp) | ||
|
||
rule sample_joint: | ||
output: "joint_samples.npz" | ||
run: | ||
key = jax.random.PRNGKey(1000) | ||
x, y = define_distribution().sample(1000, key) | ||
np.savez(output[0], x=x, y=y) | ||
|
||
rule sample_pmi: | ||
output: "pmi_samples.npz" | ||
run: | ||
key = jax.random.PRNGKey(101) | ||
profile_samples = fine.pmi_profile(key=key, dist=define_distribution(), n=1_000_000) | ||
np.savez(output[0], samples=profile_samples) | ||
|
||
|
||
rule plot_figure: | ||
input: | ||
joint_samples="joint_samples.npz", | ||
pmi_samples="pmi_samples.npz" | ||
output: | ||
figure = "figure_discrete_continuous_example.pdf" | ||
run: | ||
samples = np.load(input.joint_samples) | ||
xs, ys = samples["x"], samples["y"] | ||
pmis = np.load(input.pmi_samples)["samples"] | ||
|
||
fig, axs = plt.subplots(1, 2, figsize=(5, 2.5), dpi=300) | ||
|
||
ax = axs[0] | ||
colors = ['blue' if y < 0.5 else 'orange' for y in ys.ravel()] | ||
ax.scatter(xs[..., 0], xs[..., 1], c=colors, s=1, alpha=0.8, rasterized=True, marker=".") | ||
ax.set_title("Samples from $P_{XY}$") | ||
ax.set_xlabel("$x_1$") | ||
ax.set_ylabel("$x_2$") | ||
|
||
ax = axs[1] | ||
ax.hist(pmis, bins=100, density=True, color='black', alpha=0.7, rasterized=True) | ||
ax.set_xlim(-3, 1) | ||
ax.set_title("PMI profile") | ||
ax.set_xlabel("PMI") | ||
ax.set_ylabel("Density") | ||
|
||
for ax in axs: | ||
ax.spines[['top', 'right']].set_visible(False) | ||
|
||
fig.tight_layout() | ||
fig.savefig(output.figure) |