Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add sonic-ize particle transformer to CMSSW_14_1_0_pre0 #15

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion Configuration/ProcessModifiers/python/allSonicTriton_cff.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
from Configuration.ProcessModifiers.particleNetPTSonicTriton_cff import particleNetPTSonicTriton
from Configuration.ProcessModifiers.deepMETSonicTriton_cff import deepMETSonicTriton
from Configuration.ProcessModifiers.deepTauSonicTriton_cff import deepTauSonicTriton
from Configuration.ProcessModifiers.particleTransformerAK4SonicTriton_cff import particleTransformerAK4SonicTriton

# collect all SonicTriton-related process modifiers here
allSonicTriton = cms.ModifierChain(enableSonicTriton,deepMETSonicTriton,particleNetSonicTriton,deepTauSonicTriton)
allSonicTriton = cms.ModifierChain(enableSonicTriton,deepMETSonicTriton,particleNetSonicTriton,particleNetPTSonicTriton,deepTauSonicTriton,particleTransformerAK4SonicTriton)

Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import FWCore.ParameterSet.Config as cms

particleTransformerAK4SonicTriton = cms.Modifier()
19 changes: 19 additions & 0 deletions RecoBTag/ONNXRuntime/interface/tensor_configs.h
Original file line number Diff line number Diff line change
Expand Up @@ -28,4 +28,23 @@ namespace deepvertex {

} // namespace deepvertex

namespace parT {

enum InputIndexes {
kChargedCandidates = 0,
kNeutralCandidates = 1,
kVertices = 2,
kChargedCandidates4Vec = 3,
kNeutralCandidates4Vec = 4,
kVertices4Vec = 5
};

constexpr unsigned n_features_cpf = 16;
constexpr unsigned n_pairwise_features_cpf = 4;
constexpr unsigned n_features_npf = 8;
constexpr unsigned n_pairwise_features_npf = 4;
constexpr unsigned n_features_sv = 14;
constexpr unsigned n_pairwise_features_sv = 4;
} // namespace parT

#endif
25 changes: 25 additions & 0 deletions RecoBTag/ONNXRuntime/interface/tensor_fillers.h
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
#define RecoBTag_ONNXRuntime_tensor_fillers_h

#include "DataFormats/BTauReco/interface/DeepFlavourTagInfo.h"
#include "RecoBTag/ONNXRuntime/interface/tensor_configs.h"

namespace btagbtvdeep {

Expand All @@ -18,6 +19,30 @@ namespace btagbtvdeep {
void seedTrack_tensor_filler(float*& ptr, const btagbtvdeep::SeedingTrackFeatures& seed_features);

void neighbourTrack_tensor_filler(float*& ptr, const btagbtvdeep::TrackPairFeatures& neighbourTrack_features);

std::vector<float> inputs_parT(const btagbtvdeep::ChargedCandidateFeatures& c_pf_features, parT::InputIndexes idx);

std::vector<float> inputs_parT(const btagbtvdeep::NeutralCandidateFeatures& n_pf_features, parT::InputIndexes idx);

std::vector<float> inputs_parT(const btagbtvdeep::SecondaryVertexFeatures& sv_features, parT::InputIndexes idx);

template<class parT_features>
void parT_tensor_filler(float*& ptr, parT::InputIndexes idx , const parT_features pf) {

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pass complex objects by reference: const parT_features& pf

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree, code is modified

std::vector<float> inputs;
inputs = inputs_parT(pf, idx);

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

capture returned temporary by const reference: const std::vector<float>& inputs = inputs_parT(pf, idx); (delete previous line)

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree, code is modified

for (unsigned int i = 0; i < inputs.size(); i++) {
*ptr = inputs[i];
++ptr;
}
if (inputs.size() > 0) --ptr;
}

template<class parT_features>
void parT_tensor_filler(std::vector<float>& vdata, parT::InputIndexes idx , const parT_features pf) {

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pass complex objects by reference: const parT_features& pf

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree, code is modified

std::vector<float> inputs;
inputs = inputs_parT(pf, idx);

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

capture returned temporary by const reference: const std::vector<float>& inputs = inputs_parT(pf, idx); (delete previous line)

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree, code is modified

vdata.insert(vdata.end(), inputs.begin(), inputs.end());
}

} // namespace btagbtvdeep

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,9 @@

#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"

#include "RecoBTag/ONNXRuntime/interface/tensor_fillers.h"
#include "RecoBTag/ONNXRuntime/interface/tensor_configs.h"

using namespace cms::Ort;

class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer<edm::GlobalCache<ONNXRuntime>> {
Expand All @@ -27,7 +30,7 @@ class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer

static std::unique_ptr<ONNXRuntime> initializeGlobalCache(const edm::ParameterSet&);
static void globalEndJob(const ONNXRuntime*);

private:
typedef std::vector<reco::ParticleTransformerAK4TagInfo> TagInfoCollection;
typedef reco::JetTagCollection JetTagCollection;
Expand All @@ -41,24 +44,9 @@ class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer
std::vector<std::string> flav_names_;
std::vector<std::string> input_names_;
std::vector<std::string> output_names_;

enum InputIndexes {
kChargedCandidates = 0,
kNeutralCandidates = 1,
kVertices = 2,
kChargedCandidates4Vec = 3,
kNeutralCandidates4Vec = 4,
kVertices4Vec = 5
};
unsigned n_cpf_;
constexpr static unsigned n_features_cpf_ = 16;
constexpr static unsigned n_pairwise_features_cpf_ = 4;
unsigned n_npf_;
constexpr static unsigned n_features_npf_ = 8;
constexpr static unsigned n_pairwise_features_npf_ = 4;
unsigned n_sv_;
constexpr static unsigned n_features_sv_ = 14;
constexpr static unsigned n_pairwise_features_sv_ = 4;
unsigned int n_cpf_;
unsigned int n_npf_;
unsigned int n_sv_;
std::vector<unsigned> input_sizes_;
std::vector<std::vector<int64_t>> input_shapes_; // shapes of each input group (-1 for dynamic axis)

Expand All @@ -84,7 +72,7 @@ void ParticleTransformerAK4ONNXJetTagsProducer::fillDescriptions(edm::Configurat
desc.add<edm::InputTag>("src", edm::InputTag("pfParticleTransformerAK4TagInfos"));
desc.add<std::vector<std::string>>("input_names", {"input_1", "input_2", "input_3", "input_4", "input_5", "input_6"});
desc.add<edm::FileInPath>("model_path",
edm::FileInPath("RecoBTag/Combined/data/RobustParTAK4/PUPPI/V00/RobustParTAK4.onnx"));
edm::FileInPath("RecoBTag/Combined/data/RobustParTAK4/PUPPI/V00/modelfile/model.onnx"));
desc.add<std::vector<std::string>>("output_names", {"softmax"});
desc.add<std::vector<std::string>>(
"flav_names", std::vector<std::string>{"probb", "probbb", "problepb", "probc", "probuds", "probg"});
Expand Down Expand Up @@ -124,12 +112,12 @@ void ParticleTransformerAK4ONNXJetTagsProducer::produce(edm::Event& iEvent, cons
get_input_sizes(taginfo);

// run prediction with dynamic batch size per event
input_shapes_ = {{(int64_t)1, (int64_t)n_cpf_, (int64_t)n_features_cpf_},
{(int64_t)1, (int64_t)n_npf_, (int64_t)n_features_npf_},
{(int64_t)1, (int64_t)n_sv_, (int64_t)n_features_sv_},
{(int64_t)1, (int64_t)n_cpf_, (int64_t)n_pairwise_features_cpf_},
{(int64_t)1, (int64_t)n_npf_, (int64_t)n_pairwise_features_npf_},
{(int64_t)1, (int64_t)n_sv_, (int64_t)n_pairwise_features_sv_}};
input_shapes_ = {{(int64_t)1, (int64_t)n_cpf_, (int64_t)parT::n_features_cpf},
{(int64_t)1, (int64_t)n_npf_, (int64_t)parT::n_features_npf},
{(int64_t)1, (int64_t)n_sv_, (int64_t)parT::n_features_sv},
{(int64_t)1, (int64_t)n_cpf_, (int64_t)parT::n_pairwise_features_cpf},
{(int64_t)1, (int64_t)n_npf_, (int64_t)parT::n_pairwise_features_npf},
{(int64_t)1, (int64_t)n_sv_, (int64_t)parT::n_pairwise_features_sv}};

outputs = globalCache()->run(input_names_, data_, input_shapes_, output_names_, 1)[0];
assert(outputs.size() == flav_names_.size());
Expand All @@ -151,24 +139,21 @@ void ParticleTransformerAK4ONNXJetTagsProducer::get_input_sizes(
const reco::FeaturesTagInfo<btagbtvdeep::ParticleTransformerAK4Features> taginfo) {
const auto& features = taginfo.features();

unsigned int n_cpf = features.c_pf_features.size();
unsigned int n_npf = features.n_pf_features.size();
unsigned int n_vtx = features.sv_features.size();
n_cpf_ = features.c_pf_features.size();
n_npf_ = features.n_pf_features.size();
n_sv_ = features.sv_features.size();

n_cpf_ = std::max((unsigned int)1, n_cpf);
n_npf_ = std::max((unsigned int)1, n_npf);
n_sv_ = std::max((unsigned int)1, n_vtx);
n_cpf_ = std::clamp(n_cpf_, (unsigned int)1, (unsigned int)25);

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can just put features.c_pf_features.size() in here directly instead of first assigning it above (i.e. delete L142-144).

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree, code is modified

n_npf_ = std::clamp(n_npf_, (unsigned int)1, (unsigned int)25);
n_sv_ = std::clamp(n_sv_, (unsigned int)1, (unsigned int)5);

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

25, 25, and 5 should be moved to named constants in the parT namespace in tensor_configs.h, so that they can be shared with the SONIC version rather than copying the hardcoded values.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree, code is modified, also the sonic version's code is modified


n_cpf_ = std::min((unsigned int)25, n_cpf_);
n_npf_ = std::min((unsigned int)25, n_npf_);
n_sv_ = std::min((unsigned int)5, n_sv_);
input_sizes_ = {
n_cpf_ * n_features_cpf_,
n_npf_ * n_features_npf_,
n_sv_ * n_features_sv_,
n_cpf_ * n_pairwise_features_cpf_,
n_npf_ * n_pairwise_features_npf_,
n_sv_ * n_pairwise_features_sv_,
n_cpf_ * parT::n_features_cpf,
n_npf_ * parT::n_features_npf,
n_sv_ * parT::n_features_sv,
n_cpf_ * parT::n_pairwise_features_cpf,
n_npf_ * parT::n_pairwise_features_npf,
n_sv_ * parT::n_pairwise_features_sv,
};
// init data storage
data_.clear();
Expand All @@ -185,110 +170,63 @@ void ParticleTransformerAK4ONNXJetTagsProducer::make_inputs(btagbtvdeep::Particl
unsigned offset = 0;

// c_pf candidates
auto max_c_pf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
const auto max_c_pf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is there a specific reason to make these const?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

these variables are just used once in the code and they are not passed into any function, so they don't have any risk of being modified... in my understanding it does not matter of I add const or not. If we in general do not make a variable constant if it is not necessary, I will remove it.

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's more that unnecessary changes to existing lines of code are discouraged.

for (std::size_t c_pf_n = 0; c_pf_n < max_c_pf_n; c_pf_n++) {
const auto& c_pf_features = features.c_pf_features.at(c_pf_n);
ptr = &data_[kChargedCandidates][offset + c_pf_n * n_features_cpf_];
ptr = &data_[parT::kChargedCandidates][offset + c_pf_n * parT::n_features_cpf];
start = ptr;
*ptr = c_pf_features.btagPf_trackEtaRel;
*(++ptr) = c_pf_features.btagPf_trackPtRel;
*(++ptr) = c_pf_features.btagPf_trackPPar;
*(++ptr) = c_pf_features.btagPf_trackDeltaR;
*(++ptr) = c_pf_features.btagPf_trackPParRatio;
*(++ptr) = c_pf_features.btagPf_trackSip2dVal;
*(++ptr) = c_pf_features.btagPf_trackSip2dSig;
*(++ptr) = c_pf_features.btagPf_trackSip3dVal;
*(++ptr) = c_pf_features.btagPf_trackSip3dSig;
*(++ptr) = c_pf_features.btagPf_trackJetDistVal;
*(++ptr) = c_pf_features.ptrel;
*(++ptr) = c_pf_features.drminsv;
*(++ptr) = c_pf_features.vtx_ass;
*(++ptr) = c_pf_features.puppiw;
*(++ptr) = c_pf_features.chi2;
*(++ptr) = c_pf_features.quality;
assert(start + n_features_cpf_ - 1 == ptr);
parT_tensor_filler(ptr, parT::kChargedCandidates, c_pf_features);
assert(start + parT::n_features_cpf - 1 == ptr);
}

// n_pf candidates
auto max_n_pf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
const auto max_n_pf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
for (std::size_t n_pf_n = 0; n_pf_n < max_n_pf_n; n_pf_n++) {
const auto& n_pf_features = features.n_pf_features.at(n_pf_n);
ptr = &data_[kNeutralCandidates][offset + n_pf_n * n_features_npf_];
ptr = &data_[parT::kNeutralCandidates][offset + n_pf_n * parT::n_features_npf];
start = ptr;
*ptr = n_pf_features.ptrel;
*(++ptr) = n_pf_features.etarel;
*(++ptr) = n_pf_features.phirel;
*(++ptr) = n_pf_features.deltaR;
*(++ptr) = n_pf_features.isGamma;
*(++ptr) = n_pf_features.hadFrac;
*(++ptr) = n_pf_features.drminsv;
*(++ptr) = n_pf_features.puppiw;
assert(start + n_features_npf_ - 1 == ptr);
parT_tensor_filler(ptr, parT::kNeutralCandidates, n_pf_features);
assert(start + parT::n_features_npf - 1 == ptr);
}

// sv candidates
auto max_sv_n = std::min(features.sv_features.size(), (std::size_t)n_sv_);
const auto max_sv_n = std::min(features.sv_features.size(), (std::size_t)n_sv_);
for (std::size_t sv_n = 0; sv_n < max_sv_n; sv_n++) {
const auto& sv_features = features.sv_features.at(sv_n);
ptr = &data_[kVertices][offset + sv_n * n_features_sv_];
ptr = &data_[parT::kVertices][offset + sv_n * parT::n_features_sv];
start = ptr;
*ptr = sv_features.pt;
*(++ptr) = sv_features.deltaR;
*(++ptr) = sv_features.mass;
*(++ptr) = sv_features.etarel;
*(++ptr) = sv_features.phirel;
*(++ptr) = sv_features.ntracks;
*(++ptr) = sv_features.chi2;
*(++ptr) = sv_features.normchi2;
*(++ptr) = sv_features.dxy;
*(++ptr) = sv_features.dxysig;
*(++ptr) = sv_features.d3d;
*(++ptr) = sv_features.d3dsig;
*(++ptr) = sv_features.costhetasvpv;
*(++ptr) = sv_features.enratio;
assert(start + n_features_sv_ - 1 == ptr);
parT_tensor_filler(ptr, parT::kVertices, sv_features);
assert(start + parT::n_features_sv - 1 == ptr);
}

// cpf pairwise features (4-vectors)
auto max_cpf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
const auto max_cpf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
for (std::size_t cpf_n = 0; cpf_n < max_cpf_n; cpf_n++) {
const auto& cpf_pairwise_features = features.c_pf_features.at(cpf_n);
ptr = &data_[kChargedCandidates4Vec][offset + cpf_n * n_pairwise_features_cpf_];
ptr = &data_[parT::kChargedCandidates4Vec][offset + cpf_n * parT::n_pairwise_features_cpf];
start = ptr;
*ptr = cpf_pairwise_features.px;
*(++ptr) = cpf_pairwise_features.py;
*(++ptr) = cpf_pairwise_features.pz;
*(++ptr) = cpf_pairwise_features.e;

assert(start + n_pairwise_features_cpf_ - 1 == ptr);
parT_tensor_filler(ptr, parT::kChargedCandidates4Vec, cpf_pairwise_features);
assert(start + parT::n_pairwise_features_cpf - 1 == ptr);
}

// npf pairwise features (4-vectors)
auto max_npf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
const auto max_npf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
for (std::size_t npf_n = 0; npf_n < max_npf_n; npf_n++) {
const auto& npf_pairwise_features = features.n_pf_features.at(npf_n);
ptr = &data_[kNeutralCandidates4Vec][offset + npf_n * n_pairwise_features_npf_];
ptr = &data_[parT::kNeutralCandidates4Vec][offset + npf_n * parT::n_pairwise_features_npf];
start = ptr;
*ptr = npf_pairwise_features.px;
*(++ptr) = npf_pairwise_features.py;
*(++ptr) = npf_pairwise_features.pz;
*(++ptr) = npf_pairwise_features.e;

assert(start + n_pairwise_features_npf_ - 1 == ptr);
parT_tensor_filler(ptr, parT::kNeutralCandidates4Vec, npf_pairwise_features);
assert(start + parT::n_pairwise_features_npf - 1 == ptr);
}

// sv pairwise features (4-vectors)
auto max_sv_N = std::min(features.sv_features.size(), (std::size_t)n_sv_);
const auto max_sv_N = std::min(features.sv_features.size(), (std::size_t)n_sv_);
for (std::size_t sv_N = 0; sv_N < max_sv_N; sv_N++) {
const auto& sv_pairwise_features = features.sv_features.at(sv_N);
ptr = &data_[kVertices4Vec][offset + sv_N * n_pairwise_features_sv_];
ptr = &data_[parT::kVertices4Vec][offset + sv_N * parT::n_pairwise_features_sv];
start = ptr;
*ptr = sv_pairwise_features.px;
*(++ptr) = sv_pairwise_features.py;
*(++ptr) = sv_pairwise_features.pz;
*(++ptr) = sv_pairwise_features.e;

assert(start + n_pairwise_features_sv_ - 1 == ptr);
parT_tensor_filler(ptr, parT::kVertices4Vec, sv_pairwise_features);
assert(start + parT::n_pairwise_features_sv - 1 == ptr);
}
}

Expand Down
Loading