Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Eady equations and problems #451

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
179 changes: 179 additions & 0 deletions examples/boussinesq/incompressible_eady.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
"""
The Eady problem solved using the incompressible Boussinesq equations.
"""

from gusto import *
from firedrake import (as_vector, SpatialCoordinate, solve, ds_t, ds_b,
PeriodicRectangleMesh, ExtrudedMesh,
cos, sin, cosh, sinh, tanh, pi, Function, sqrt)
import sys

# ---------------------------------------------------------------------------- #
# Test case parameters
# ---------------------------------------------------------------------------- #

day = 24.*60.*60.
hour = 60.*60.
dt = 100.

if '--running-tests' in sys.argv:
tmax = dt
tdump = dt
columns = 10
nlayers = 5
else:
tmax = 30*day
tdump = 2*hour
columns = 30
nlayers = 30

H = 10000.
L = 1000000.
f = 1.e-04

# rescaling
beta = 1.0
f = f/beta
L = beta*L

dirname = 'incompressible_eady'

# ---------------------------------------------------------------------------- #
# Set up model objects
# ---------------------------------------------------------------------------- #

# Domain -- 2D periodic base mesh which is one cell thick
m = PeriodicRectangleMesh(columns, 1, 2.*L, 1.e5, quadrilateral=True)
mesh = ExtrudedMesh(m, layers=nlayers, layer_height=H/nlayers)
domain = Domain(mesh, dt, "RTCF", 1)

# Equation
Omega = as_vector([0., 0., f*0.5])
parameters = IncompressibleEadyParameters(H=H, L=L, f=f,
deltax=2.*L/float(columns),
deltaz=H/float(nlayers),
fourthorder=True,
N=sqrt(2.5e-5))
eqns = IncompressibleEadyEquations(domain, parameters, Omega=Omega)

# I/O
output = OutputParameters(dirname=dirname,
dumpfreq=int(tdump/dt))

diagnostic_fields = [CourantNumber(), YComponent('u'),
KineticEnergy(), KineticEnergyY(),
IncompressibleEadyPotentialEnergy(parameters),
Sum("KineticEnergy", "EadyPotentialEnergy"),
Difference("KineticEnergy", "KineticEnergyY"),
IncompressibleGeostrophicImbalance(eqns),
TrueResidualV(parameters), SawyerEliassenU(eqns),
Perturbation('p'), Perturbation('b')]

io = IO(domain, output, diagnostic_fields=diagnostic_fields)

# Transport schemes and methods
b_opts = SUPGOptions()
transport_schemes = [SSPRK3(domain, "u"), SSPRK3(domain, "b", options=b_opts)]
transport_methods = [DGUpwind(eqns, "u"), DGUpwind(eqns, "b", ibp=b_opts.ibp)]

# Linear solve
linear_solver = BoussinesqSolver(eqns)

# Time stepper
stepper = SemiImplicitQuasiNewton(eqns, io, transport_schemes,
transport_methods,
linear_solver=linear_solver)

# ---------------------------------------------------------------------------- #
# Initial conditions
# ---------------------------------------------------------------------------- #

# Initial conditions
u0 = stepper.fields("u")
b0 = stepper.fields("b")
p0 = stepper.fields("p")

# spaces
Vu = domain.spaces("HDiv")
Vb = domain.spaces("theta")
Vp = domain.spaces("DG")

# parameters
x, y, z = SpatialCoordinate(mesh)
Nsq = parameters.Nsq

# background buoyancy
bref = (z-H/2)*Nsq
b_b = Function(Vb).project(bref)


# buoyancy perturbation
def coth(x):
return cosh(x)/sinh(x)


def Z(z):
return Bu*((z/H)-0.5)


def n():
return Bu**(-1)*sqrt((Bu*0.5-tanh(Bu*0.5))*(coth(Bu*0.5)-Bu*0.5))


a = -4.5
Bu = 0.5
b_exp = a*sqrt(Nsq)*(-(1.-Bu*0.5*coth(Bu*0.5))*sinh(Z(z))*cos(pi*(x-L)/L)
- n()*Bu*cosh(Z(z))*sin(pi*(x-L)/L))
b_pert = Function(Vb).interpolate(b_exp)

# set total buoyancy
b0.project(b_b + b_pert)

# calculate hydrostatic pressure
p_b = Function(Vp)
boussinesq_hydrostatic_balance(eqns, b_b, p_b)
boussinesq_hydrostatic_balance(eqns, b0, p0)

# set x component of velocity
dbdy = parameters.dbdy
u = -dbdy/f*(z-H/2)

# set y component of velocity
v = Function(Vp).assign(0.)

g = TrialFunction(Vu)
wg = TestFunction(Vu)

n = FacetNormal(mesh)

a = inner(wg, g)*dx
L = -div(wg)*p0*dx + inner(wg, n)*p0*(ds_t + ds_b)
pgrad = Function(Vu)
solve(a == L, pgrad)

# get initial v
Vp = p0.function_space()
phi = TestFunction(Vp)
m = TrialFunction(Vp)

a = f*phi*m*dx
L = phi*pgrad[0]*dx
solve(a == L, v)

# set initial u
u_exp = as_vector([u, v, 0.])
u0.project(u_exp)

# set the background profiles
stepper.set_reference_profiles([('p', p_b),
('b', b_b)])

# The residual diagnostic needs to have u_n added to stepper.fields
u_n = stepper.x.n('u')
stepper.fields('u_n', field=u_n)

# ---------------------------------------------------------------------------- #
# Run
# ---------------------------------------------------------------------------- #

stepper.run(t=0, tmax=tmax)
190 changes: 190 additions & 0 deletions examples/compressible/compressible_eady.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
"""
This solves the Eady problem using the compressible Euler equations.
"""

from gusto import *
from gusto import thermodynamics
from firedrake import (as_vector, SpatialCoordinate, solve, ds_b, ds_t,
PeriodicRectangleMesh, ExtrudedMesh, assemble,
exp, cos, sin, cosh, sinh, tanh, pi, Function, sqrt)
import sys

# ---------------------------------------------------------------------------- #
# Test case parameters
# ---------------------------------------------------------------------------- #

day = 24.*60.*60.
hour = 60.*60.
dt = 30.
L = 1000000.
H = 10000. # Height position of the model top
f = 1.e-04

if '--running-tests' in sys.argv:
tmax = dt
tdump = dt
columns = 10 # number of columns
nlayers = 5 # horizontal layers
else:
tmax = 30*day
tdump = day/2
columns = 30 # number of columns
nlayers = 30 # horizontal layers

dirname = 'compressible_eady'

# ---------------------------------------------------------------------------- #
# Set up model objects
# ---------------------------------------------------------------------------- #

# Domain -- 2D periodic base mesh which is one cell thick
m = PeriodicRectangleMesh(columns, 1, 2.*L, 1.e5, quadrilateral=True)
mesh = ExtrudedMesh(m, layers=nlayers, layer_height=H/nlayers)
domain = Domain(mesh, dt, "RTCF", 1)

# Equation
Omega = as_vector([0., 0., f*0.5])
parameters = CompressibleEadyParameters(N=sqrt(2.5e-5), H=H, f=f, Pi0=Constant(1.0))
eqns = CompressibleEadyEquations(domain, parameters, Omega=Omega,
u_transport_option='vector_advection_form')

# I/O
output = OutputParameters(dirname=dirname,
dumpfreq=int(tdump/dt))

diagnostic_fields = [CourantNumber(),
XComponent('u'),
Exner(parameters),
Exner(parameters, reference=True),
CompressibleKineticEnergy(),
CompressibleKineticEnergyY(),
CompressibleEadyPotentialEnergy(parameters),
Sum("CompressibleKineticEnergy",
"CompressibleEadyPotentialEnergy"),
Difference("CompressibleKineticEnergy",
"CompressibleKineticEnergyY"),
Perturbation('rho'),
Perturbation('theta'),
Perturbation('Exner')
]

io = IO(domain, output, diagnostic_fields=diagnostic_fields)

# Transport schemes and methods
theta_opts = SUPGOptions()
transport_schemes = [SSPRK3(domain, "u"),
SSPRK3(domain, "rho"),
SSPRK3(domain, "theta", options=theta_opts)]
transport_methods = [DGUpwind(eqns, "u"),
DGUpwind(eqns, "rho"),
DGUpwind(eqns, "theta", ibp=theta_opts.ibp)]

# Linear solver
linear_solver = CompressibleSolver(eqns)

# Time stepper
stepper = SemiImplicitQuasiNewton(eqns, io, transport_schemes,
transport_methods,
linear_solver=linear_solver,
num_outer=4, num_inner=1)

# ---------------------------------------------------------------------------- #
# Initial conditions
# ---------------------------------------------------------------------------- #

u0 = stepper.fields("u")
rho0 = stepper.fields("rho")
theta0 = stepper.fields("theta")

# spaces
Vu = domain.spaces("HDiv")
Vt = domain.spaces("theta")
Vr = domain.spaces("DG")

# first setup the background buoyancy profile
# z.grad(bref) = N**2
# the following is symbolic algebra, using the default buoyancy frequency
# from the parameters class.
x, y, z = SpatialCoordinate(mesh)
g = parameters.g
Nsq = parameters.Nsq
theta_surf = parameters.theta_surf

# N^2 = (g/theta)dtheta/dz => dtheta/dz = theta N^2g => theta=theta_0exp(N^2gz)
theta_ref = theta_surf*exp(Nsq*(z-H/2)/g)
theta_b = Function(Vt).interpolate(theta_ref)


# set theta_pert
def coth(x):
return cosh(x)/sinh(x)


def Z(z):
return Bu*((z/H)-0.5)


def n():
return Bu**(-1)*sqrt((Bu*0.5-tanh(Bu*0.5))*(coth(Bu*0.5)-Bu*0.5))


a = -4.5
Bu = 0.5
theta_exp = a*theta_surf/g*sqrt(Nsq)*(-(1.-Bu*0.5*coth(Bu*0.5))*sinh(Z(z))*cos(pi*(x-L)/L)
- n()*Bu*cosh(Z(z))*sin(pi*(x-L)/L))
theta_pert = Function(Vt).interpolate(theta_exp)

# set theta0
theta0.interpolate(theta_b + theta_pert)

# calculate hydrostatic Pi
rho_b = Function(Vr)
compressible_hydrostatic_balance(eqns, theta_b, rho_b, solve_for_rho=True)
compressible_hydrostatic_balance(eqns, theta0, rho0, solve_for_rho=True)

# set Pi0 -- set this in configuration so that everything sees the same value
Pi = thermodynamics.exner_pressure(parameters, rho0, theta0)
Pi0 = parameters.Pi0
Pi0_value = assemble(Pi*dx) / assemble(Constant(1.0)*dx(domain=mesh))
Pi0.assign(Pi0_value)

# set x component of velocity
cp = parameters.cp
dthetady = parameters.dthetady
u = cp*dthetady/f*(Pi-Pi0)

# set y component of velocity by solving a problem
v = Function(Vr).assign(0.)

# get Pi gradient
g = TrialFunction(Vu)
wg = TestFunction(Vu)

n = FacetNormal(mesh)

a = inner(wg, g)*dx
L = -div(wg)*Pi*dx + inner(wg, n)*Pi*(ds_t + ds_b)
pgrad = Function(Vu)
solve(a == L, pgrad)

# get initial v
m = TrialFunction(Vr)
phi = TestFunction(Vr)

a = phi*f*m*dx
L = phi*cp*theta0*pgrad[0]*dx
solve(a == L, v)

# set initial u
u_exp = as_vector([u, v, 0.])
u0.project(u_exp)

# set the background profiles
stepper.set_reference_profiles([('rho', rho_b),
('theta', theta_b)])

# ---------------------------------------------------------------------------- #
# Run
# ---------------------------------------------------------------------------- #

stepper.run(t=0, tmax=tmax)
Loading
Loading