Skip to content
This repository was archived by the owner on May 4, 2019. It is now read-only.

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
massie committed Oct 24, 2014
0 parents commit 9cae3b6
Show file tree
Hide file tree
Showing 23 changed files with 3,207 additions and 0 deletions.
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
target
*.iml
.idea
dependency-reduced-pom.xml
*.swp
308 changes: 308 additions & 0 deletions LICENSE.txt

Large diffs are not rendered by default.

208 changes: 208 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
Global Alliance Read Store Example
==================================

*This is a toy project* to inform a discussion on content-addressable storage at the Global Alliance. Be warned: it is alpha quality at best.

## Getting the self-executing jar file

You can just [download the latest jar file](https://github.com/massie/gastore/releases) and skip to the section on how to run, if you like; otherwise, here are the steps to building from source yourself.

1. Install [Apache Maven](http://maven.apache.org), if you haven't already.
2. Clone this repo: `git clone https://github.com/massie/gastore.git`
3. Change into the repo directory: `cd gastore`
4. Compile, run the tests and build the uber jar file by running `mvn package`
5. Run the program and check that you can see the help: `java -jar target/gastore-0.1-SNAPSHOT.jar --help`

## How to run

To run, just use `java -jar gastore-0.1-SNAPSHOT.jar [options]`, e.g.,

```
$ java -jar target/gastore-0.1-SNAPSHOT.jar --help
Usage: gastore [options]
-i <file> | --input <file>
The sam/bam file to convert and compute a digest on
-s <path> | --ga_readstore_dir <path>
Path to the Global Alliance read store data
--help
prints this usage text
```


This program does one thing: adds SAM or BAM files to an example Global Alliance repository. A GA repo is nothing more than a specially-organized directory.

## Tutorial

You can walk through this tutorial from the command-line if you like.

We'll add `HG00096` and `HG00097` to a GA repo. The former BAM has three read groups and the latter has two, e.g.

```
$ samtools view -H HG00096.chrom20.ILLUMINA.bwa.GBR.low_coverage.20120522.bam | grep @RG
@RG ID:SRR062634 LB:2845856850 SM:HG00096 PI:206 CN:WUGSC PL:ILLUMINA DS:SRP001294
@RG ID:SRR062635 LB:2845856850 SM:HG00096 PI:206 CN:WUGSC PL:ILLUMINA DS:SRP001294
@RG ID:SRR062641 LB:2845856850 SM:HG00096 PI:206 CN:WUGSC PL:ILLUMINA DS:SRP001294
$ samtools view -H HG00097.chrom20.ILLUMINA.bwa.GBR.low_coverage.20130415.bam | grep @RG
@RG ID:SRR741384 LB:IWG_IND-TG.HG00097-4_1pA SM:HG00097 PI:297 CN:BCM PL:ILLUMINA DS:SRP001294
@RG ID:SRR741385 LB:IWG_IND-TG.HG00097-4_1pA SM:HG00097 PI:297 CN:BCM PL:ILLUMINA DS:SRP001294
```

Let's create an empty directory for our repo and save `HG00096` to it.

```
$ mkdir ga_repo
$ java -jar gastore-0.1-SNAPSHOT.jar --input HG00096.chrom20.ILLUMINA.bwa.GBR.low_coverage.20120522.bam --ga_readstore_dir ga_repo
```

A minute of two later, you should see the following output similar to...

```
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 19,488,810B for [alignedSequence] BINARY: 968,804 values, 100,766,368B raw, 19,135,531B comp, 1536 pages, encodings: [RLE, PLAIN, BIT_PACKED]
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 25,395B for [alignedQuality, array] INT32: 2,906,412 values, 1,104,491B raw, 18,589B comp, 184 pages, encodings: [RLE, PLAIN_DICTIONARY], dic { 3 entries, 12B raw, 3B comp}
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 47B for [nextMatePosition, referenceName] BINARY: 968,804 values, 8B raw, 28B comp, 1 pages, encodings: [RLE, PLAIN, BIT_PACKED]
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 47B for [nextMatePosition, position] INT64: 968,804 values, 8B raw, 28B comp, 1 pages, encodings: [RLE, PLAIN, BIT_PACKED]
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 47B for [nextMatePosition, reverseStrand] BOOLEAN: 968,804 values, 8B raw, 28B comp, 1 pages, encodings: [RLE, PLAIN, BIT_PACKED]
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 50B for [info, map, key] BINARY: 968,804 values, 16B raw, 31B comp, 1 pages, encodings: [RLE, PLAIN]
Oct 24, 2014 2:37:53 PM INFO: parquet.hadoop.ColumnChunkPageWriteStore: written 50B for [info, map, value, array] BINARY: 968,804 values, 16B raw, 31B comp, 1 pages, encodings: [RLE, PLAIN]
```

This is Parquet output showing the compression techniques used and there effect on data size (Parquet files are lossless and smaller than BAM files).

Looking in the GA repo, we find...

```
$ find ga_repo/
ga_repo/
ga_repo//readGroups
ga_repo//readGroups/1D
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF/.reads.crc
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF/readGroupInfo
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF/reads
ga_repo//readGroups/81
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D/.reads.crc
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D/readGroupInfo
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D/reads
ga_repo//readGroups/F2
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/.reads.crc
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/readGroupInfo
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/reads
ga_repo//staging
ga_repo//staging/1414186600183--5828974329906361401
```

There are three read groups from `HG00096` in the repo stored by their associated digest (a SHA-1). The `readGroupInfo` is encoded as JSON and the `reads` are stored as Parquet.

```
$ cat ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/readGroupInfo
{
"id" : "SRR062641",
"datasetId" : {
"string" : "SRR062641"
},
"name" : {
"string" : "SRR062641"
},
"description" : {
"string" : "SRP001294"
},
"sampleId" : {
"string" : "HG00096"
},
"experiment" : null,
"predictedInsertSize" : {
"int" : 206
},
"created" : {
"long" : 0
},
"updated" : {
"long" : 0
},
"programs" : [ ],
"referenceSetId" : null,
"info" : { }
}
```

Let's add `HG00097` to the repo now.

```
java -jar gastore-0.1-SNAPSHOT.jar --input HG00097.chrom20.ILLUMINA.bwa.GBR.low_coverage.20130415.bam --ga_readstore_dir ga_repo
```

After the program finishes, you'll see we five read groups in the repo...

```
$ find ga_repo/
ga_repo/
ga_repo//readGroups
ga_repo//readGroups/1D
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF/.reads.crc
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF/readGroupInfo
ga_repo//readGroups/1D/F0C66B14C6F0FE13A63395580EAB8BDE8B17FF/reads
ga_repo//readGroups/45
ga_repo//readGroups/45/FEFC0240C97495DCC40BC4E9B2517DA687DACD
ga_repo//readGroups/45/FEFC0240C97495DCC40BC4E9B2517DA687DACD/.reads.crc
ga_repo//readGroups/45/FEFC0240C97495DCC40BC4E9B2517DA687DACD/readGroupInfo
ga_repo//readGroups/45/FEFC0240C97495DCC40BC4E9B2517DA687DACD/reads
ga_repo//readGroups/81
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D/.reads.crc
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D/readGroupInfo
ga_repo//readGroups/81/8F16439FB25A050D91F693B113F09ACFCE938D/reads
ga_repo//readGroups/F2
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/.reads.crc
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/readGroupInfo
ga_repo//readGroups/F2/20A849274E6DEAE66DCA5C6043A6DAEA154CA9/reads
ga_repo//readGroups/F6
ga_repo//readGroups/F6/1740F2A50CB38E53E3712D9754690036594ED0
ga_repo//readGroups/F6/1740F2A50CB38E53E3712D9754690036594ED0/.reads.crc
ga_repo//readGroups/F6/1740F2A50CB38E53E3712D9754690036594ED0/readGroupInfo
ga_repo//readGroups/F6/1740F2A50CB38E53E3712D9754690036594ED0/reads
ga_repo//staging
ga_repo//staging/1414186600183--5828974329906361401
ga_repo//staging/1414187874570--5444760301337977224
```

Note: The `staging` directories hold the intermediate data as it is being converted and a CRC generated. There are two staging directories because we added two files.

If you try to add `HG00097` a second time, you will get the following `Directory not empty` error,

```
Exception in thread "main" java.nio.file.FileSystemException: ga_repo/staging/1414188183754--6468335609415945395/1 -> ga_repo/readGroups/F6/1740F2A50CB38E53E3712D9754690036594ED0: Directory not empty
```

This design prevents duplicate data from making it into the GA repo.

## ReadGroupSet

There is no support for a read group *set* but they are simpler object having only read group children.

## Hadoop and Spark

This code could easily be modified to run on top of Apache Spark and Hadoop. Instead of writing to a local filesystem, the GA repo data would be held on HDFS. The conversion, CRC and digest calculations would be done in parallel as a Spark job.

## Code Walk-Through

All the source code is in the [src/main/scala/org/ga4gh/readstore](https://github.com/massie/gastore/tree/master/src/main/scala/org/ga4gh/readstore) directory.

* `Main.scala` is the main entry point to the program. It processes the command-line arguments and calls `addBamFile` on the `GAReadStore`
* `GAReadStore` is passed the `rootDirPath` for the GA repo. If the `staging` and `readGroups` directories don't exist, it creates them. The `addBamFile` method uses `htsjdk` to read a SAM/BAM file, stage the data in the `staging` area and then "commit" it to the repo.
* There is a single `ReadGroupStore` instance for each read group. They are responsible for converting `SAMReadGroupRecord` and `SAMRecord` objects to Global Alliance format. The method `generateSHA1` shows how we create a unique digest for a read group based on the name, description, data of creation, sample id, read sequence CRC and read quality score CRC values.
* The [SHA-1](http://en.wikipedia.org/wiki/SHA-1) hash is turned into a 40 character string with the first two characters being used as a directory.
* `SAMRecordConverter.scala` is mostly complete but there are still some `TODO`s in the code
* `SAMRecordGroupConverter.scala` has many `TODO`s in the code.
* `CRCAccumulator.scala` is a utility class for creating CRCs that are order-independent (mixing up sequence and quality score order will not effect the value.. see `CRCAccumulatorSuite.scala` as an example)

## Notes

* We need to publish are schema to Sonatype. It will make it easier for people to build projects on top of it. For now, I just copied in the schemas to this project.
* Schema `id` does not have a default value
* Schema `properPlacement`, `duplicateFragment`, `failedVendorQualityChecks`, `secondaryAlignment`, `supplementaryAlignment` have broken default values
* We need to move the schema namespace from `org.ga4gh` to `org.ga4gh.models` or something like that
Loading

0 comments on commit 9cae3b6

Please sign in to comment.