$ git clone https://github.com/ganlumomo/thermal-uda-cls.git
$ cd thermal-uda-cls
$ conda env create -f environment.yml
$ conda activate thermal-uda-cls
- MS-COCO:
- FLIR:
- M3FD: https://github.com/JinyuanLiu-CV/TarDAL
$ python utils/prepare_dataset_mscoco_flir.py
$ python utils/prepare_dataset_mscoco_m3fd.py
(thermal-uda-cls) $ python core/main.py \
--tgt_cat flir --n_classes 3 \
--batch_size 32 --epochs 15 \
--device cuda:0 --logdir outputs/flir
(thermal-uda-cls) $ python core/main.py \
--tgt_cat m3fd --n_classes 6 \
--batch_size 32 --epochs 30 \
--device cuda:0 --logdir outputs/m3fd
optional:
--self_train
: self training using pseudo labels--wandb
: enable wandb logging
(thermal-uda-cls) $ python core/test.py \
--tgt_cat m3fd --n_classes 6 \
--trained outputs/m3fd/best_model.pt \
--device cuda:0 --logdir outputs/m3fd
optional:
--d_trained outputs/m3fd/best_model_d.pt
: pseudo label generation--tsne
: enable t-SNE visualization
This repo is based on: