Skip to content

generalroboticslab/Policy-Stitching

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Policy Stitching: Learning Transferable Robot Policies

Pingcheng Jian, Easop Lee, Zachary Bell, Michael M. Zavlanos, Boyuan Chen
Duke University

generalroboticslab.com/PolicyStitching

Overview

This repo contains the implementation for paper Policy Stitching: Learning Transferable Robot Policies.

ps_teaser

Citation

If you find our paper or codebase helpful, please consider citing:

@inproceedings{jian2023policy,
  title={Policy Stitching: Learning Transferable Robot Policies},
  author={Jian, Pingcheng and Lee, Easop and Bell, Zachary and Zavlanos, Michael M and Chen, Boyuan},
  booktitle={7th Annual Conference on Robot Learning},
  year={2023}
}

Content

installation

  • The development tools of this project can be installed with conda:
$ conda env create -f environment.yml .

training

  1. Train modular policy of the Panda Robot arm in simulation from scratch
mpirun -np 7 python -u module_sac_train_panda_PS.py --env-name='PandaPush-v2' --n-epochs=200 --device cuda:0 --seed 101 --save_data --save_model
  1. Few-shot fine-tune the stitched policy of the Panda Robot arm in simulation
mpirun -np 7 python -u module_sac_train_panda_PS_few_shot.py --env-name='PandaL3Push-v2' --ro-env-name PandaL3Push-v3 --ta-env-name PandaPush-v2 --n-epochs=200 --device cuda:0 --seed 101 --save_data --save_model
  1. Train modular policy of the UR5 Robot arm in simulation from scratch
mpirun -np 7 python -u module_sac_train_ur5_PS.py --env-name='Ur5Push1' --n-epochs=200 --device cuda:0 --seed 101 --control_type='joint' --save_data --save_model
  1. Few-shot fine-tune the stitched policy of the UR5 Robot arm in simulation
mpirun -np 7 python -u module_sac_train_ur5_PS_few_shot.py --env-name='Ur5Push1' --ro-env-name Ur5Push4 --ta-env-name Ur5L5Push1 --n-epochs=200 --device cuda:0 --seed 101 --control_type='joint' --save_data --save_model
  1. Few-shot fine-tune the stitched policy of the UR5 Robot arm in real world
mpirun -np 7 python -u module_sac_train_real_ur5_PS.py --env-name='Ur5Push1' --n-epochs=200 --device cuda:0 --seed 101 --control_type='joint' --save_data --save_model

ps_teaser

testing

  1. test modular policy of the Panda Robot arm in simulation
python module_sac_test_panda_PS.py --device cpu --env-name PandaL3Push-v2 --ro-env-name PandaL3Push-v3 --ta-env-name PandaPush-v2 --ta_seed 101 --ro_seed 101
  1. test modular policy of the UR5 Robot arm in simulation
python module_sac_test_ur5_PS.py --device cpu --env-name='Ur5Push1' --ro-env-name Ur5Push4 --ta-env-name Ur5L5Push1 --ta_seed 101 --ro_seed 101
  1. test modular policy of the UR5 Robot arm in real world
python module_sac_test_real_ur5_PS.py --device cpu --env-name='Ur5Push1' --ro-env-name Ur5Push4 --ta-env-name Ur5L5Push1 --ta_seed 101 --ro_seed 101

Experiment setup for the Panda robot arm in the simulation ps_teaser

Experiment setup for the UR5 robot arm in the simulation and the real world ps_teaser

Acknowledgement

This project refers to the github repositories panda-gym, pybullet_ur5_robotiq, and hindsight-experience-replay.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages