Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add kurt and sem functions #32

Merged
merged 4 commits into from
Feb 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
187 changes: 187 additions & 0 deletions docs/user-guide/advanced/Pandas_API.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,91 @@
"tab.mean(axis=1)"
]
},
{
"cell_type": "markdown",
"id": "fe565b65-fbf2-47ba-a26e-791d09fd4f55",
"metadata": {},
"source": [
"### Table.kurt()\n",
"\n",
"```\n",
"Table.kurt(axis=0, skipna=True, numeric_only=False)\n",
"```\n",
"\n",
"Return unbiased kurtosis over requested axis. Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.\n",
"\n",
"\n",
"**Parameters:**\n",
"\n",
"| Name | Type | Description | Default |\n",
"| :----------: | :--: | :------------------------------------------------------------------------------- | :-----: |\n",
"| axis | int | Axis for the function to be applied on. 0 is columns, 1 is rows. | 0 |\n",
"| skipna | bool | not yet implemented | True |\n",
"| numeric_only | bool | Only use columns of the table that are of a numeric data type. | False |\n",
"\n",
"**Returns:**\n",
"\n",
"| Type | Description |\n",
"| :--------: | :--------------------------------------------------------------------------------------- |\n",
"| Dictionary | Map of columns and their yielded kurtosis values |"
]
},
{
"cell_type": "markdown",
"id": "e6069cac-d260-4f80-9688-3d1ec273cd22",
"metadata": {},
"source": [
"**Examples:**\n",
"\n",
"Calculate the kurt across the columns of a table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4219c826-a84b-4722-9847-372d3837acdb",
"metadata": {},
"outputs": [],
"source": [
"tab = kx.Table(data=\n",
" {\n",
" 'a': [1, 2, 2, 4],\n",
" 'b': [1, 2, 6, 7],\n",
" 'c': [7, 8, 9, 10],\n",
" 'd': [7, 11, 14, 14]\n",
" }\n",
")\n",
"tab"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "437ab485-bf73-4209-b63e-aa0d1bfa5d58",
"metadata": {},
"outputs": [],
"source": [
"tab.kurt()"
]
},
{
"cell_type": "markdown",
"id": "ea3e1cf6-2304-4061-a846-1cbc0572ea9d",
"metadata": {},
"source": [
"Calculate the kurtosis across the rows of a table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63312e8b-76f0-46eb-b4d7-b2213561c86e",
"metadata": {},
"outputs": [],
"source": [
"tab.kurt(axis=1)"
]
},
{
"cell_type": "markdown",
"id": "7bf853c5",
Expand Down Expand Up @@ -646,6 +731,108 @@
"tab.mode(dropna=False)"
]
},
{
"cell_type": "markdown",
"id": "b248fef1",
"metadata": {},
"source": [
"### Table.sem()\n",
"\n",
"```\n",
"Table.sem(axis=0, skipna=True, numeric_only=False, ddof=0)\n",
"```\n",
"Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument\n",
"\n",
"**Parameters:**\n",
"\n",
"| Name | Type | Description | Default |\n",
"| :----------: | :--: | :------------------------------------------------------------------------------- | :-----: |\n",
"| axis | int | The axis to calculate the sum across 0 is columns, 1 is rows. | 0 |\n",
"| skipna | bool | not yet implemented | True |\n",
"| numeric_only | bool | Only use columns of the table that are of a numeric data type. | False |\n",
"| ddof | int | Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. | 1 |\n",
"\n",
"**Returns:**\n",
"\n",
"| Type | Description |\n",
"| :----------------: | :------------------------------------------------------------------- |\n",
"| Dictionary | The sem across each row / column with the key corresponding to the row number or column name. |"
]
},
{
"cell_type": "markdown",
"id": "71bd1d6f",
"metadata": {},
"source": [
"**Examples**\n",
"\n",
"Calculate the sem across the columns of a table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "350c2b7c",
"metadata": {},
"outputs": [],
"source": [
"tab = kx.Table(data=\n",
" {\n",
" 'a': [1, 2, 2, 4],\n",
" 'b': [1, 2, 6, 7],\n",
" 'c': [7, 8, 9, 10],\n",
" 'd': [7, 11, 14, 14],\n",
" }\n",
" )\n",
"tab"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b89307e9",
"metadata": {},
"outputs": [],
"source": [
"tab.sem()"
]
},
{
"cell_type": "markdown",
"id": "6933f01f",
"metadata": {},
"source": [
"Calculate the sem across the rows of a table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3edd3feb",
"metadata": {},
"outputs": [],
"source": [
"tab.sem(axis=1)"
]
},
{
"cell_type": "markdown",
"id": "ae7afe5a",
"metadata": {},
"source": [
"Calculate sem accross columns with ddof=0:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de626961",
"metadata": {},
"outputs": [],
"source": [
"tab.sem(ddof=0)"
]
},
{
"cell_type": "markdown",
"id": "7e2813b4",
Expand Down
47 changes: 47 additions & 0 deletions src/pykx/pandas_api/pandas_meta.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,32 @@ def mean(self, axis: int = 0, numeric_only: bool = False):
tab
)

@api_return
def kurt(self, axis: int = 0, numeric_only: bool = False):
tab = self
if 'Keyed' in str(type(tab)):
tab = q.value(tab)
if numeric_only:
tab = _get_numeric_only_subtable(tab)

axis_keys = q('{[axis;tab] $[0~axis;cols;`$string til count @] tab}', axis, tab)

return q(
'''{[tab;axis;axis_keys]
tab:$[0~axis;(::);flip] value flip tab;
kurt:{[x]
res: x - avg x;
n: count x;
m2: sum rsq: res xexp 2;
m4: sum rsq xexp 2;
adj: 3 * xexp[n - 1;2] % (n - 2) * (n - 3);
num: n * (n + 1) * (n - 1) * m4;
den: (n - 2) * (n - 3) * m2 xexp 2;
(num % den) - adj};
axis_keys!kurt each tab}
''', tab, axis, axis_keys
)

@api_return
def median(self, axis: int = 0, numeric_only: bool = False):
tab = self
Expand Down Expand Up @@ -203,6 +229,27 @@ def mode(self, axis: int = 0, numeric_only: bool = False, dropna: bool = True):
tab
)

@api_return
def sem(self, axis: int = 0, ddof: int = 1, numeric_only: bool = False):
tab = self
if 'Keyed' in str(type(tab)):
tab = q.value(tab)
if numeric_only:
tab = _get_numeric_only_subtable(tab)

axis_keys = q('{[axis;tab] $[0~axis;cols;`$string til count @] tab}', axis, tab)

if ddof == len(tab):
return q('{x!count[x]#0n}', axis_keys)

return q(
'''{[tab;axis;ddof;axis_keys]
tab:$[0~axis;(::);flip] value flip tab;
d:{dev[x] % sqrt count[x] - y}[;ddof];
axis_keys!d each tab}
''', tab, axis, ddof, axis_keys
)

@api_return
def abs(self, numeric_only=False):
tab = self
Expand Down
Loading
Loading