Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EVM Precompiles support #524

Merged
merged 12 commits into from
Nov 8, 2023
Merged
284 changes: 284 additions & 0 deletions contracts/evm/Precompiles.sol
Original file line number Diff line number Diff line change
@@ -0,0 +1,284 @@
// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.20;

contract Precompiles {

event DebugBytes(bytes data);
event DebugUint256(uint256 value);

// Generated for the ecPairing, using circom's "Getting started", "Verifying from a Smart Contract", example: https://docs.circom.io/getting-started/proving-circuits/#verifying-a-proof
// Base field size
uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;

// Verification Key data
uint256 constant alphax = 1992193412575387772633166300059621656894667020589796054599256571938481924230;
uint256 constant alphay = 17286394816897329629069822916679309371076736310284017855248312609568383258237;
uint256 constant betax1 = 11964323460734694315238111140642024467452813403052111330212995086166809270885;
uint256 constant betax2 = 12267908196455409001876930296230756523799830500981645004963998667454025535434;
uint256 constant betay1 = 21275906100829937195191642051557308290074855814227086905366055391443466419712;
uint256 constant betay2 = 11626206177405313309349477264020271977827652855514445334498513782927752593000;
uint256 constant gammax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant gammax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant gammay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint256 constant gammay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant deltax1 = 2009753607463674868643623849162140280453293590938413759204491084610780506800;
uint256 constant deltax2 = 2318786346813288613910245922805240833314377829481066116275566236397337633311;
uint256 constant deltay1 = 10136331428626930676893265737858796788982376651161771565051197160272857837902;
uint256 constant deltay2 = 10244858826673312074376951503947532249080874861318982996096318922537363359310;


uint256 constant IC0x = 8932029301015886160530317842397264455712404585681011305111252155919622321955;
uint256 constant IC0y = 8277775186538355354365054546186421179471810889108665599571530260894812131569;

uint256 constant IC1x = 10605992167215957342338540958692483139633228909008555813480804645225067260597;
uint256 constant IC1y = 18983729039899565301459273836628802849991503687662293824406539434384123854551;


// Memory data
uint16 constant pVk = 0;
uint16 constant pPairing = 128;

uint16 constant pLastMem = 896;
// End of generated data


function verifySignature(
bytes32 hashedMessage,
uint8 v,
bytes32 r,
bytes32 s,
address expectedSigner
) public pure returns (bool) {
// Recover the address from the signature
address recoveredAddress = ecrecover(hashedMessage, v, r, s);

// Compare the recovered address with the expected signer's address
return recoveredAddress == expectedSigner;
}

function computeSha256Hash(string memory input) public pure returns (bytes32) {
return sha256(abi.encodePacked(input));
}

function computeRipemd160Hash(string memory input) public pure returns (bytes20) {
return ripemd160(abi.encodePacked(input));
}

function getIdentity(uint256 input) public pure returns (uint256) {
uint256 output;
assembly {
// Load data from the call data at the specified index
output := calldataload(4) // 4 bytes offset for the function selector
}
return output;
}

function modExp(uint256 base, uint256 exponent, uint256 modulus) public returns (uint256 result) {
// Input length for base, exponent, and modulus
uint256 length = 32; // for simplicity, assuming all inputs are 32 bytes

emit DebugUint256(base);
emit DebugUint256(exponent);
emit DebugUint256(modulus);
emit DebugBytes(bytes.concat(abi.encode(base), abi.encode(exponent), abi.encode(modulus)));

assembly {
// Free memory pointer
let p := mload(0x40)

// Define length and position for base, exponent, and modulus
mstore(p, length) // Length of base
mstore(add(p, 0x20), length) // Length of exponent
mstore(add(p, 0x40), length) // Length of modulus
mstore(add(p, 0x60), base) // Base
mstore(add(p, 0x80), exponent) // Exponent
mstore(add(p, 0xA0), modulus) // Modulus

// Call the MODEXP precompiled contract at address 0x5
if iszero(call(not(0), 0x05, 0, p, 0xC0, p, 0x20)) {
revert(0, 0)
}

// Load the result
result := mload(p)
}
}

function ecAdd(uint256[2] memory point1, uint256[2] memory point2) public view returns (uint256[2] memory result) {
// Input format: (x1, y1, x2, y2)
uint256[4] memory input;
input[0] = point1[0];
input[1] = point1[1];
input[2] = point2[0];
input[3] = point2[1];

assembly {
// Call the ecAdd precompile at address 0x6
if iszero(staticcall(not(0), 0x6, input, 0x80, result, 0x40)) {
revert(0, 0)
}
}
}

function ecMul(uint256[2] memory point, uint256 k, uint256 prime) public returns (uint256[2] memory result) {
// Ensure the input point is on the curve
require(isOnCurve(point, prime), "Point is not on the curve");

// Use the precompiled contract for the ecMul operation
// The precompiled contract for ecMul is at address 0x07
assembly {
// Free memory pointer
let p := mload(0x40)

// Store input data in memory
mstore(p, mload(point))
mstore(add(p, 0x20), mload(add(point, 0x20)))
mstore(add(p, 0x40), k)

// Call the precompiled contract
// Input: 0x60 bytes (point x, point y, scalar k)
// Output: 0x40 bytes (resulting point x', y')
if iszero(call(not(0), 0x07, 0, p, 0x60, p, 0x40)) {
revert(0, 0)
}

// Load the result from memory
result := p
}
}

// Generated function using circom's "Getting started", "Verifying from a Smart Contract", example: https://docs.circom.io/getting-started/proving-circuits/#verifying-a-proof
function ecPairing(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[1] calldata _pubSignals) public view returns (bool) {
assembly {
function checkField(v) {
if iszero(lt(v, q)) {
mstore(0, 0)
return(0, 0x20)
}
}

// G1 function to multiply a G1 value(x,y) to value in an address
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn, 32), y)
mstore(add(mIn, 64), s)

success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)

if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}

mstore(add(mIn, 64), mload(pR))
mstore(add(mIn, 96), mload(add(pR, 32)))

success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)

if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
}

function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk {
let _pPairing := add(pMem, pPairing)
let _pVk := add(pMem, pVk)

mstore(_pVk, IC0x)
mstore(add(_pVk, 32), IC0y)

// Compute the linear combination vk_x

g1_mulAccC(_pVk, IC1x, IC1y, calldataload(add(pubSignals, 0)))


// -A
mstore(_pPairing, calldataload(pA))
mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q))

// B
mstore(add(_pPairing, 64), calldataload(pB))
mstore(add(_pPairing, 96), calldataload(add(pB, 32)))
mstore(add(_pPairing, 128), calldataload(add(pB, 64)))
mstore(add(_pPairing, 160), calldataload(add(pB, 96)))

// alpha1
mstore(add(_pPairing, 192), alphax)
mstore(add(_pPairing, 224), alphay)

// beta2
mstore(add(_pPairing, 256), betax1)
mstore(add(_pPairing, 288), betax2)
mstore(add(_pPairing, 320), betay1)
mstore(add(_pPairing, 352), betay2)

// vk_x
mstore(add(_pPairing, 384), mload(add(pMem, pVk)))
mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32))))


// gamma2
mstore(add(_pPairing, 448), gammax1)
mstore(add(_pPairing, 480), gammax2)
mstore(add(_pPairing, 512), gammay1)
mstore(add(_pPairing, 544), gammay2)

// C
mstore(add(_pPairing, 576), calldataload(pC))
mstore(add(_pPairing, 608), calldataload(add(pC, 32)))

// delta2
mstore(add(_pPairing, 640), deltax1)
mstore(add(_pPairing, 672), deltax2)
mstore(add(_pPairing, 704), deltay1)
mstore(add(_pPairing, 736), deltay2)


let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20)

isOk := and(success, mload(_pPairing))
}

let pMem := mload(0x40)
mstore(0x40, add(pMem, pLastMem))

// Validate that all evaluations ∈ F

checkField(calldataload(add(_pubSignals, 0)))

checkField(calldataload(add(_pubSignals, 32)))


// Validate all evaluations
let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem)

mstore(0, isValid)
return(0, 0x20)
}
}

function blake2(uint32 rounds, bytes32[2] memory h, bytes32[4] memory m, bytes8[2] memory t, bool f) public returns (bytes32[2] memory) {
bytes32[2] memory output;

bytes memory args = abi.encodePacked(rounds, h[0], h[1], m[0], m[1], m[2], m[3], t[0], t[1], f);

assembly {
if iszero(staticcall(not(0), 0x09, add(args, 32), 0xd5, output, 0x40)) {
revert(0, 0)
}
}

return output;
}

function isOnCurve(uint256[2] memory point, uint256 prime) public pure returns (bool) {
uint256 x = point[0];
uint256 y = point[1];
uint256 lhs = mulmod(y, y, prime);
uint256 rhs = addmod(mulmod(mulmod(x, x, prime), x, prime), 3, prime);
return lhs == rhs;
}
}
Loading
Loading