Skip to content

[CVPR2019] The Perfect Match: 3D Point Cloud Matching with Smoothed Densities

License

Notifications You must be signed in to change notification settings

iralabdisco/3DSmoothNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3DSmoothNet

  1. Generate the Smoothed Density Valie (SVD) voxel grid and keypoints (saved as .pcd) using the voxelize_all.py. Modify the input and output direcotries at the beginning of hte file. The parameters for the SVD grid are stored in the voxel_parameters.yaml file. Do not modify the directory parameters in the .yaml file, they are update autmatically by the script.
  2. Use the run_benchmark_global.py to generate the features from the SVD rapresentation.
  3. Use the join_all.py script to merge keypoints and features in a single .npz file.

SLAM example

  1. voxelize_tum_slam.py
  2. run_benchmark_global.py (modify the )
  3. join_feature_keypoints.py --cnn_dim 64 -f /benchmark/tum_slam_comparison/3DSmoothNet/features/pioneer_slam2_025/ -o /benchmark/tum_slam_comparison/3DSmoothNet/features/pioneer_slam2_025/

About

[CVPR2019] The Perfect Match: 3D Point Cloud Matching with Smoothed Densities

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 55.6%
  • C++ 26.8%
  • MATLAB 15.0%
  • Shell 1.3%
  • CMake 1.3%