Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Random sampling to Numpy Frontend: logseries #22719

Merged
merged 7 commits into from
Aug 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions ivy/functional/frontends/numpy/random/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,19 @@ def lognormal(mean=0.0, sigma=1.0, size=None):
return ret


@to_ivy_arrays_and_back
@from_zero_dim_arrays_to_scalar
def logseries(p=0, size=None):
if p < 0 or p >= 1:
raise ValueError("p value must be in the open interval (0, 1)")
r = ivy.log(1 - p)
u = ivy.random_uniform(low=0.0, high=1.0, shape=size)
v = ivy.random_uniform(low=0.0, high=1.0, shape=size)
q = 1 - ivy.exp(r * u)
ret = 1 + ivy.log(v) / ivy.log(q)
return ret


@to_ivy_arrays_and_back
@from_zero_dim_arrays_to_scalar
def multinomial(n, pvals, size=None):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -439,6 +439,42 @@ def test_numpy_lognormal(
)


@handle_frontend_test(
fn_tree="numpy.random.logseries",
input_dtypes=helpers.get_dtypes("float", index=2),
p=st.floats(
allow_nan=False,
allow_infinity=False,
min_value=0,
max_value=1,
exclude_max=True,
),
size=helpers.get_shape(allow_none=True),
test_with_out=st.just(False),
)
def test_numpy_logseries(
input_dtypes,
frontend,
test_flags,
fn_tree,
backend_fw,
on_device,
p,
size,
):
helpers.test_frontend_function(
input_dtypes=input_dtypes,
backend_to_test=backend_fw,
test_flags=test_flags,
frontend=frontend,
fn_tree=fn_tree,
on_device=on_device,
test_values=False,
p=p,
size=size,
)


# multinomial
@handle_frontend_test(
fn_tree="numpy.random.multinomial",
Expand Down