Skip to content

landoskape/dominoes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dominoes ML Repository

This repository contains a package for running the game of dominoes with python code. It contains a gameplay engine that can manage a game, a library of agents that play the game with different strategies, and a league manager, which is used to manage a group of agents that play games with each other.

I developed the repository to accomplish two main goals:

  1. Create a dominoes agent that plays the game better than me, and hopefully better than most humans!
  2. Teach myself about deep reinforcement learning tools and standard coding practices.

Requirements

This repository requires several packages that are available for download via the standard methods, including conda or pip. First, clone this repository to your computer. Then, in a command window, change directory to wherever you cloned the repository and use the environment.yml file to create a new conda environment. Note: I highly recommend using mamba instead of conda. The best way to do that is with miniforge but if you want to use an existing conda setup then instructions are here. If you are using conda instead of mamba, replace mamba with conda, they work identically (except mamba is faster!).

cd /path/to/cloned/repository
mamba env create -f environment.yml

Note: I have tested and developed this code on a Windows 10 machine so cannot guarantee that it works on other operating systems. I think most compatibility issues will relate to pytorch and nvidia tools, so if the environment creation fails, I would recommend commenting out the lines in the environment.yml file related to pytorch, (pytorch, torchvision, torchaudio, pytorch-cuda=12.1), creating the environment as above, then installing the torch packages as recommended from the
pytorch website. Note that for you to use your GPU (if it's installed), the pytorch-cuda version needs to be the same as whatever is installed on your computer. To figure this out, open a command prompt and type nvidia-smi. It'll show you the CUDA Version in the top right if it's installed.

mamba create -n dominoes
mamba activate dominoes
pip install <package_name> # go in order through the environment.yml file, ignore the pytorch packages

# use whatever line of code is suggested from the pytorch website:
mamba install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

Documentation

Until I learn how to build a project page, the presentation and documentation of this repository is going to live on markdown files in the docs folder. These files explain how to use this repository and present analyses of the agents I have developed. This is a list of them with links to the file.

Documentation for Dominoes Package and Experiments

  1. Groundwork for Dominoes in Python
  2. Reinforcement Learning Agents

Documentation for Pointer Network Experiments

  1. Toy Problem (& intro to pointer networks)
  2. Novel Architecture Comparison on Toy Problem
  3. Tests on the Traveling Salesman Problem
  4. A Novel Complex Sequencing Problem

Contributing

Feel free to contribute to this project by opening issues or submitting pull requests. I'm doing this to learn about RL and ML so suggestions, improvements, and collaborations are more than welcome!

License

This project is licensed under the MIT License.

About

Builds an RL agent to play Dominoes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published