Skip to content

Commit

Permalink
Minor improvements
Browse files Browse the repository at this point in the history
  • Loading branch information
martinescardo committed Sep 8, 2023
1 parent 72e37ac commit 82ce8f9
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 24 deletions.
13 changes: 4 additions & 9 deletions source/InjectiveTypes/MathematicalStructures.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -665,24 +665,19 @@ Monoid-is-closed-under-prop-Π {𝓤} = V
: (p : Ω 𝓤)
(A : p holds → 𝓤 ̇)
(α : (h : p holds) → monoid-structure (A h))
→ ((h : p holds) → monoid-axioms (A h) (α h))
(F : (h : p holds) → monoid-axioms (A h) (α h))
→ monoid-axioms (Π A) (ρ⁻¹ p A α)
axioms-closed-under-prop-Π p A α F = I , II , III , IV
where
ρ⁻¹-remark : (p : Ω 𝓤)
(A : p holds → 𝓤 ̇)
(α : (h : p holds) → monoid-structure (A h))
→ ρ⁻¹ p A α
= (λ (f : Π A) (g : Π A) (h : p holds) → pr₁ (α h) (f h) (g h)) ,
(λ h → pr₂ (α h))
ρ⁻¹-remark p A α = refl

_·_ : Π A → Π A → Π A
f · g = λ h → pr₁ (α h) (f h) (g h)

e : Π A
e h = pr₂ (α h)

ρ⁻¹-remark : ρ⁻¹ p A α = (_·_ , e)
ρ⁻¹-remark = refl

I : is-set (Π A)
I = Π-is-set fe' (λ h →
case F h of
Expand Down
23 changes: 8 additions & 15 deletions source/InjectiveTypes/MathematicalStructuresMoreGeneral.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -368,8 +368,8 @@ open monoid
∞-Magma∙-structure = monoid-structure

∞-Magma∙-structure-Π-condition : technical-condition
(∞-Magma∙-structure {𝓤})
universes-are-aflabby-Π
(∞-Magma∙-structure {𝓤})
universes-are-aflabby-Π
∞-Magma∙-structure-Π-condition =
technical-condition-×
universes-are-aflabby-Π
Expand All @@ -381,10 +381,7 @@ ainjectivity-of-∞-Magma∙ {𝓤} =
ainjectivity-of-type-of-structures
∞-Magma∙-structure
universes-are-aflabby-Π
(technical-condition-×
universes-are-aflabby-Π
∞-Magma-structure-Π-condition
Pointed-Π-condition)
∞-Magma∙-structure-Π-condition

\end{code}

Expand Down Expand Up @@ -415,24 +412,20 @@ Monoid-Π-condition {𝓤} =
: (p : Ω 𝓤)
(A : p holds → 𝓤 ̇)
(α : (h : p holds) → monoid-structure (A h))
→ ((h : p holds) → monoid-axioms (A h) (α h))
(F : (h : p holds) → monoid-axioms (A h) (α h))
→ monoid-axioms (Π A) (σ p A α)
axioms-Π-condition p A α F = I , II , III , IV
where
σ-remark : (p : Ω 𝓤)
(A : p holds → 𝓤 ̇)
(α : (h : p holds) → monoid-structure (A h))
→ σ p A α
= (λ (f : Π A) (g : Π A) (h : p holds) → pr₁ (α h) (f h) (g h)) ,
(λ h → pr₂ (α h))
σ-remark p A α = refl

_·_ : Π A → Π A → Π A
f · g = λ h → pr₁ (α h) (f h) (g h)

e : Π A
e h = pr₂ (α h)

σ-remark : σ p A α = (_·_ , e)
σ-remark = refl


I : is-set (Π A)
I = Π-is-set fe' (λ h →
case F h of
Expand Down

0 comments on commit 82ce8f9

Please sign in to comment.