-
-
Notifications
You must be signed in to change notification settings - Fork 8
Five data concepts
Data are a centric point in t6. As a consequence, a lot of tools are in place to provide you with the full control on your data within thre platform.
Data Preparation aims to clean and transform raw data prior to process and analyse. t6 is embedding multiple preprocessors to validate (or reject), format, transform and correct data ; as well as a Data-Fusion engine to combine multiple measurements together and enrich them with a better accuracy in a result. Major goal of this data-preparation is to have best in class quality on the measures + eliminate bias during analysis phase.
Data-annotation or Data-labelling expect to classify every single measure on categories. This classification aims to identify an input pattern.
Exploratory Data Analysis on t6 brings graphical and non graphical information about your data measured in a certain Flow. The Exploration process will help understand how does your data looks like and is a prerequisite for any analysis.
t6 does not yet provide any tools on Hypothesis management.
t6 does not yet provide any tools on Explanation management.
t6 Technical Api Documentation. Please refers to CONTRIBUTING.md in case you would like to help :-)
- Installing t6
- Internal errors
- Repository structure
- Six main Resources
- Other Resources
- Datapoints
- Users
- UIs 💥 not detailed
- Mqtt Topic 💥 not detailed
- Referentials
- Technical Api Documentation 🔗
- TWA Application Screenshots
- t6 Security policy
- Advanced t6 concepts