Skip to content

mindspore-courses/Chinese-Text-Classification-MindSpore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chinese-Text-Classification-Mindspore

中文文本分类,TextCNN,TextRNN,FastText,TextRCNN,BiLSTM_Attention, DPCNN, Transformer, 基于mindspore,开箱即用。

介绍

声明:

本项目是通过原Chinese-Text-Classification-Pytorch项目针对pytorch进行mindspore框架的模型迁移与训练,旨在让更多感兴趣的人能够上手mindspore并了解、支持mindspore的研发,做出贡献加速mindspore社区成长与完善,欢迎star:star2::blush::two_hearts:

Mindspore:

昇思MindSpore通过社区合作,面向全场景构建最佳昇腾匹配、支持多处理器架构的开放AI架构,为算法工程师和数据科学家提供开发友好、运行高效、部署灵活的体验,帮助人工智能软硬件应用生态繁荣发展。

数据以字为单位输入模型,预训练词向量使用 搜狗新闻 Word+Character 300d点这里下载

环境

python 3.7
mindspore 2.0.0 tqdm
sklearn

中文数据集

THUCNews中抽取了20万条新闻标题,文本长度在20到30之间。一共10个类别,每类2万条。

类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。

数据集划分:

数据集 数据量
训练集 18万
验证集 1万
测试集 1万

更换自己的数据集

  • 如果用字,按照数据集的格式来格式化你的数据。
  • 如果用词,提前分好词,词之间用空格隔开,python run.py --model TextCNN --word True
  • 使用预训练词向量:utils.py的main函数可以提取词表对应的预训练词向量。

使用说明

# 训练并测试:
# TextCNN
python run.py --model TextCNN

# TextRNN
python run.py --model TextRNN

# TextRNN_Att
python run.py --model TextRNN_Att

# TextRCNN
python run.py --model TextRCNN

# FastText, embedding层是随机初始化的
python run.py --model FastText --embedding random 

# DPCNN
python run.py --model DPCNN

# Transformer
python run.py --model Transformer

参数

模型都在models目录下,超参定义和模型定义在同一文件中。

API对应及出处

PyTorch与MindSpore API映射表

About

This repository is used for storing information about MindSpore

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages