Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement rerun for random walk samplers #68

Merged
merged 22 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: monty
Title: Monte Carlo Models
Version: 0.2.22
Version: 0.2.23
Authors@R: c(person("Rich", "FitzJohn", role = c("aut", "cre"),
email = "[email protected]"),
person("Wes", "Hinsley", role = "aut"),
Expand Down
48 changes: 47 additions & 1 deletion R/sampler-random-walk.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,38 @@
##'
##' The initial point selected will lie within the domain, as this is
##' enforced by [monty_sample].
##'
##' @param rerun_every Optional integer giving the frequency at which
##' we should rerun the model on the current "accepted" parameters to
##' obtain a new density for stochastic models. The default for this
##' (`Inf`) will never trigger a rerun, but if you set to 100, then
##' every 100 steps we run the model on both the proposed *and* previously
##' accepted parameters before doing the comparison. This may help "unstick"
##' chains, at the cost of some bias in the results.
##'
##' @param rerun_random Logical, controlling the behaviour of
##' rerunning (when `rerun_every` is finite). With the default value of
##' `TRUE`, we stochastically rerun at each step with probability of
##' `1 / rerun_every`. If `FALSE` we rerun the model at fixed intervals of
##' iterations (given by `rerun_every`). The two methods give the same
##' expected number of MCMC steps between reruns but a different
##' pattern.
##'
##' @return A `monty_sampler` object, which can be used with
##' [monty_sample]
##'
##' @export
monty_sampler_random_walk <- function(vcv = NULL, boundaries = "reflect") {
monty_sampler_random_walk <- function(vcv = NULL, boundaries = "reflect",
rerun_every = Inf, rerun_random = TRUE) {
check_vcv(vcv, allow_3d = TRUE, call = environment())
internal <- new.env()

boundaries <- match_value(boundaries, c("reflect", "reject", "ignore"))

if (!identical(unname(rerun_every), Inf)) {
assert_scalar_positive_integer(rerun_every)
}
assert_scalar_logical(rerun_random)

initialise <- function(pars, model, rng) {
n_pars <- length(model$parameters)
Expand All @@ -40,6 +62,10 @@ monty_sampler_random_walk <- function(vcv = NULL, boundaries = "reflect") {
## this is enforced elsewhere
stopifnot(model$properties$allow_multiple_parameters)
}

internal$rerun <-
make_rerun(rerun_every, rerun_random, model$properties$is_stochastic)
internal$step <- 0

vcv <- sampler_validate_vcv(vcv, pars)
internal$proposal <-
Expand All @@ -48,6 +74,15 @@ monty_sampler_random_walk <- function(vcv = NULL, boundaries = "reflect") {
}

step <- function(state, model, rng) {
internal$step <- internal$step + 1
rerun <- internal$rerun(internal$step, rng)
if (any(rerun)) {
## This is currently just setup assuming we are not using multiple
## parameters as currently they cannot be used with stochastic models,
## while the rerun is only used with stochastic models
state$density <- model$density(state$pars)
}

pars_next <- internal$proposal(state$pars, rng)
reject_some <- boundaries == "reject" &&
!all(i <- is_parameters_in_domain(pars_next, model$domain))
Expand Down Expand Up @@ -147,3 +182,14 @@ is_parameters_in_domain <- function(x, domain) {
if (is.matrix(x)) apply(i, 2, all) else FALSE
}
}


make_rerun <- function(every, random, is_stochastic) {
if (!is_stochastic && !is.finite(every)) {
function(i, rng) rep(FALSE, rng$size())
} else if (random) {
function(i, rng) rng$random_real(1) < 1 / every
} else {
function(i, rng) rep(i %% every == 0, rng$size())
}
}
53 changes: 53 additions & 0 deletions man/monty_rng.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

23 changes: 22 additions & 1 deletion man/monty_sampler_random_walk.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

16 changes: 16 additions & 0 deletions tests/testthat/test-sampler-random-walk.R
Original file line number Diff line number Diff line change
Expand Up @@ -324,3 +324,19 @@ test_that("can print a sampler object", {
"<monty_sampler: Random walk (monty_random_walk)>",
fixed = TRUE, all = FALSE)
})


test_that("Can rerun a stochastic model", {
set.seed(1)
m <- ex_sir_filter_posterior()
vcv <- matrix(c(0.0006405, 0.0005628, 0.0005628, 0.0006641), 2, 2)
sampler1 <- monty_sampler_random_walk(vcv = vcv, rerun_every = 2,
rerun_random = FALSE)
sampler2 <- monty_sampler_random_walk(vcv = vcv, rerun_every = 2)
res1 <- monty_sample(m, sampler1, 20)
res2 <- monty_sample(m, sampler2, 20)

expect_gt(sum(diff(res1$density) != 0), sum(diff(res1$pars[1, , 1]) != 0))
expect_true(all(diff(res1$density)[seq(1, 20, by = 2)] != 0))
expect_gt(sum(diff(res2$density) != 0), sum(diff(res2$pars[1, , 1]) != 0))
})
Loading