Skip to content
This repository has been archived by the owner on Dec 20, 2024. It is now read-only.

Commit

Permalink
enh: add a testing module to keep convenience tooling
Browse files Browse the repository at this point in the history
Co-authored-by: Jon Haitz Legarreta Gorroño <[email protected]>
  • Loading branch information
oesteban and jhlegarreta committed Oct 23, 2024
1 parent bcbe011 commit 2056025
Show file tree
Hide file tree
Showing 4 changed files with 199 additions and 0 deletions.
1 change: 1 addition & 0 deletions docs/developers.rst
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,5 @@ Information on specific functions, classes, and methods.
api/eddymotion.math
api/eddymotion.model
api/eddymotion.registration
api/eddymotion.testing
api/eddymotion.utils
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,7 @@ branch = true
concurrency = ['multiprocessing']
omit = [
'*/tests/*',
'*/testing/*',
'*/__init__.py',
'*/conftest.py',
'src/eddymotion/_version.py'
Expand Down
Empty file.
197 changes: 197 additions & 0 deletions src/eddymotion/testing/simulations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# © The NiPreps Developers <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
# https://www.nipreps.org/community/licensing/
#
"""Utilities for testing purposes."""

from __future__ import annotations

# import nibabel as nib
import numpy as np
from dipy.core.geometry import sphere2cart
from dipy.core.gradients import gradient_table
from dipy.core.sphere import HemiSphere, Sphere, disperse_charges
from dipy.sims.voxel import all_tensor_evecs


def add_b0(bvals: np.ndarray, bvecs: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Insert a b=0 at the front of the gradient table (b-values and b-vectors).
Parameters
----------
bvals : :obj:`~numpy.ndarray`
Array of b-values.
bvecs : :obj:`~numpy.ndarray`
Array of b-vectors.
Returns
-------
:obj:`tuple`
Updated gradient table (b-values, b-vectors) including a b=0.
"""
_bvals = np.insert(bvals, 0, 0)
_bvecs = np.insert(bvecs, 0, np.array([0, 0, 0]), axis=0)
return _bvals, _bvecs


def create_single_fiber_evecs(theta: float = 0, phi: float = 0) -> np.ndarray:
"""
Create eigenvectors for a simulated fiber given the polar coordinates of its pricipal axis.
Parameters
----------
theta : :obj:`float`
Theta coordinate
phi : :obj:`float`
Phi coordinate
Returns
-------
:obj:`~numpy.ndarray`
Eigenvectors for a single fiber.
"""
# Polar coordinates (theta, phi) of the principal axis of the tensor
angles = np.array([theta, phi])
sticks = np.array(sphere2cart(1, np.deg2rad(angles[0]), np.deg2rad(angles[1])))
evecs = all_tensor_evecs(sticks)
return evecs


def create_random_polar_coordinates(
hsph_dirs: int, seed: int = 1234
) -> tuple[np.ndarray, np.ndarray]:
"""
Create random polar coordinates.
Parameters
----------
hsph_dirs : :obj:`int`
Number of hemisphere directions.
seed : :obj:`int`, optional
Seed for the random number generator, by default 1234.
Returns
-------
:obj:`tuple`
Theta and Phi values of polar coordinates.
"""
rng = np.random.default_rng(seed)
theta = np.pi * rng.random(hsph_dirs)
phi = 2 * np.pi * rng.random(hsph_dirs)
return theta, phi


def create_diffusion_encoding_gradient_dirs(
hsph_dirs: int, iterations: int = 5000, seed: int = 1234
) -> Sphere:
"""
Create the dMRI gradient-encoding directions.
Parameters
----------
hsph_dirs : :obj:`int`
Number of hemisphere directions.
iterations : :obj:`int`, optional
Number of iterations for charge dispersion, by default 5000.
seed : :obj:`int`, optional
Seed for the random number generator, by default 1234.
Returns
-------
:obj:`~dipy.core.sphere.Sphere`
A sphere with diffusion-encoding gradient directions.
"""
# Create the gradient-encoding directions placing random points on a hemisphere
theta, phi = create_random_polar_coordinates(hsph_dirs, seed=seed)
hsph_initial = HemiSphere(theta=theta, phi=phi)

# Move the points so that the electrostatic potential energy is minimized
hsph_updated, _ = disperse_charges(hsph_initial, iterations)

# Create a sphere
return Sphere(xyz=np.vstack((hsph_updated.vertices, -hsph_updated.vertices)))


def create_single_shell_gradient_table(
hsph_dirs: int, bval_shell: float, iterations: int = 5000
) -> gradient_table:
"""
Create a single-shell gradient table.
Parameters
----------
hsph_dirs : :obj:`int`
Number of hemisphere directions.
bval_shell : :obj:`float`
Shell b-value.
iterations : :obj:`int`, optional
Number of iterations for charge dispersion, by default 5000.
Returns
-------
:obj:`~dipy.core.gradients.gradient_table`
The gradient table for the single-shell.
"""
# Create diffusion-encoding gradient directions
sph = create_diffusion_encoding_gradient_dirs(hsph_dirs, iterations=iterations)

# Create the gradient bvals and bvecs
vertices = sph.vertices
values = np.ones(vertices.shape[0])
bvecs = vertices
bvals = bval_shell * values

# Add a b0 value to the gradient table
bvals, bvecs = add_b0(bvals, bvecs)
return gradient_table(bvals, bvecs)


def get_query_vectors(
gtab: gradient_table, train_mask: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Get the diffusion-encoding gradient vectors for estimation from the gradient table.
Get the diffusion-encoding gradient vectors where the signal is to be estimated from the
gradient table and the training mask: the vectors of interest are those that are masked in
the training mask. b0 values are excluded.
Parameters
----------
gtab : :obj:`~dipy.core.gradients.gradient_table`
Gradient table.
train_mask : :obj:`~numpy.ndarray`
Mask for selecting training vectors.
Returns
-------
:obj:`tuple`
Gradient vectors and indices for estimation.
"""
idx = np.logical_and(~train_mask, ~gtab.b0s_mask)
return gtab.bvecs[idx], np.where(idx)[0]

0 comments on commit 2056025

Please sign in to comment.