Skip to content
This repository has been archived by the owner on Dec 20, 2024. It is now read-only.

Commit

Permalink
enh: add a new eddymotion.viz module
Browse files Browse the repository at this point in the history
Spins off work by @jhlegarreta in #227.

Co-authored-by: Jon Haitz Legarreta Gorroño <[email protected]>
  • Loading branch information
oesteban and jhlegarreta committed Oct 23, 2024
1 parent 4857ebf commit b63a064
Show file tree
Hide file tree
Showing 4 changed files with 116 additions and 0 deletions.
1 change: 1 addition & 0 deletions docs/developers.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,3 +38,4 @@ Information on specific functions, classes, and methods.
api/eddymotion.registration
api/eddymotion.testing
api/eddymotion.utils
api/eddymotion.viz
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,7 @@ concurrency = ['multiprocessing']
omit = [
'*/tests/*',
'*/testing/*',
'*/viz/*',
'*/__init__.py',
'*/conftest.py',
'src/eddymotion/_version.py'
Expand Down
Empty file added src/eddymotion/viz/__init__.py
Empty file.
114 changes: 114 additions & 0 deletions src/eddymotion/viz/signals.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# © The NiPreps Developers <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
# https://www.nipreps.org/community/licensing/
#
"""Visualizing signals and intermediate aspects of models."""

import matplotlib.gridspec as gridspec
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import pearsonr


def plot_error(
kfolds: list[int], mean: np.ndarray, std_dev: np.ndarray, xlabel: str, ylabel: str, title: str
) -> plt.Figure:
"""
Plot the error and standard deviation.
Parameters
----------
kfolds : :obj:`list`
Number of k-folds.
mean : :obj:`~numpy.ndarray`
Mean RMSE values.
std_dev : :obj:`~numpy.ndarray`
Standard deviation values.
xlabel : :obj:`str`
X-axis label.
ylabel : :obj:`str`
Y-axis label.
title : :obj:`str`
Plot title.
Returns
-------
:obj:`~matplotlib.pyplot.Figure`
Matplotlib figure object.
"""
fig, ax = plt.subplots()
ax.plot(kfolds, mean, c="orange")
ax.fill_between(kfolds, mean - std_dev, mean + std_dev, alpha=0.5, color="orange")
ax.scatter(kfolds, mean, c="orange")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xticks(kfolds)
ax.set_xticklabels(kfolds)
ax.set_title(title)
fig.tight_layout()
return fig


def plot_estimation_carpet(gt_nii, gp_nii, gtab, suptitle, **kwargs):
from nireports.reportlets.modality.dwi import nii_to_carpetplot_data
from nireports.reportlets.nuisance import plot_carpet

fig = plt.figure(layout="tight")
gs = gridspec.GridSpec(ncols=1, nrows=2, figure=fig)
fig.suptitle(suptitle)

divide_by_b0 = False
gt_data, segments = nii_to_carpetplot_data(gt_nii, bvals=gtab.bvals, divide_by_b0=divide_by_b0)

title = "Ground truth"
plot_carpet(gt_data, segments, subplot=gs[0, :], title=title, **kwargs)

gp_data, segments = nii_to_carpetplot_data(gp_nii, bvals=gtab.bvals, divide_by_b0=divide_by_b0)

title = "Estimated (GP)"
plot_carpet(gt_data, segments, subplot=gs[1, :], title=title, **kwargs)

return fig


def plot_correlation(x, y, title):
r = pearsonr(x, y)

# Fit a linear curve and estimate its y-values and their error
a, b = np.polyfit(x, y, deg=1)
y_est = a * x + b
y_err = x.std() * np.sqrt(1 / len(x) + (x - x.mean()) ** 2 / np.sum((x - x.mean()) ** 2))

fig, ax = plt.subplots()
ax.plot(x, y_est, "-", color="black", label=f"r = {r.correlation:.2f}")
ax.fill_between(x, y_est - y_err, y_est + y_err, alpha=0.2, color="lightgray")
ax.plot(x, y, marker="o", markersize="4", color="gray")

ax.set_ylabel("Ground truth")
ax.set_xlabel("Estimated")

plt.title(title)
plt.legend(loc="lower right")

fig.tight_layout()

return fig, r

0 comments on commit b63a064

Please sign in to comment.