Skip to content
This repository has been archived by the owner on Dec 20, 2024. It is now read-only.

Commit

Permalink
Merge pull request #247 from jhlegarreta/AllowMultiFiberVoxels
Browse files Browse the repository at this point in the history
ENH: Allow simulating multi-fiber voxels
  • Loading branch information
oesteban authored Oct 28, 2024
2 parents d3f5eac + 69cd2d5 commit fa57a64
Showing 1 changed file with 145 additions and 1 deletion.
146 changes: 145 additions & 1 deletion src/eddymotion/testing/simulations.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,12 +29,19 @@
from dipy.core.geometry import sphere2cart
from dipy.core.gradients import gradient_table
from dipy.core.sphere import HemiSphere, Sphere, disperse_charges
from dipy.sims.voxel import all_tensor_evecs, single_tensor
from dipy.sims.voxel import all_tensor_evecs, multi_tensor, single_tensor

# Bounds defined following Canales-Rodriguez, NIMG 184 2019, https://doi.org/10.1016/j.neuroimage.2018.08.071
BOUNDS_LAMBDA1: tuple[float, float] = (1.4e-3, 1.8e-3)
BOUNDS_LAMBDA23: tuple[float, float] = (0.1e-3, 0.5e-3)

BOUNDS_2FIBERS_NONDOMINANT_VF1: tuple[float, float] = (0.3, 0.7)

BOUNDS_2FIBERS_DOMINANT_VF1: tuple[float, float] = (0.1, 0.3)

BOUNDS_3FIBERS_VF1: tuple[float, float] = (0.25, 0.3)
BOUNDS_3FIBERS_VF2: tuple[float, float] = (0.3, 0.35)


def add_b0(bvals: np.ndarray, bvecs: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Expand Down Expand Up @@ -232,6 +239,38 @@ def create_random_diffusivity_eigenvalues(size, rng):
)


def create_three_fiber_random_volume_fractions(size, rng):
"""Create fiber volume fractions drawn from a uniform distribution for a
three-fiber configuration."""

# f1 ~ U(0.25, 0.3) f2 ~ U(0.3, 0.35) and f3 = 1 - (f1 + f2) set
# according to Canales-Rodriguez, NIMG 184 2019,
# https://doi.org/10.1016/j.neuroimage.2018.08.071
f1 = rng.uniform(*BOUNDS_3FIBERS_VF1, size=size)
f2 = rng.uniform(*BOUNDS_3FIBERS_VF2, size=size)
return zip(f1 * 100, f2 * 100, (1 - (f1 + f2)) * 100, strict=True)


def create_two_fiber_nondominant_random_volume_fractions(size, rng):
"""Create fiber volume fractions drawn from a uniform distribution for a
two-fiber configuration with non-dominant fibers."""

# f1 ~ U(0.3, 0.7), f2 = 1 - f1 following Canales-Rodriguez, NIMG 184 2019,
# https://doi.org/10.1016/j.neuroimage.2018.08.071
f1 = rng.uniform(*BOUNDS_2FIBERS_NONDOMINANT_VF1, size=size)
return zip(f1 * 100, (1 - f1) * 100, strict=True)


def create_two_fiber_dominant_random_volume_fractions(size, rng):
"""Create fiber volume fractions drawn from a uniform distribution for a
two-fiber configuration with a dominant fiber."""

# f1 ~ U(0.1, 0.3), f2 = 1 - f1 following to Canales-Rodriguez, NIMG 184
# 2019, https://doi.org/10.1016/j.neuroimage.2018.08.071
f1 = rng.uniform(*BOUNDS_2FIBERS_DOMINANT_VF1, size=size)
return zip(f1 * 100, (1 - f1) * 100, strict=True)


def group_values(values, group_size):
return np.asarray([values[i : i + group_size] for i in range(0, len(values), group_size)])

Expand Down Expand Up @@ -268,6 +307,111 @@ def simulate_voxels(S0, hsph_dirs, bval_shell=1000, snr=20, n_voxels=1, evals=No
return signal, gtab


def simulate_two_fiber_multivoxel(gtab, S0, snr, n_voxels, rng, dominant):
"""Create two-fiber multi-voxel DWI signal."""

evals = zip(
create_random_diffusivity_eigenvalues(n_voxels, rng),
create_random_diffusivity_eigenvalues(n_voxels, rng),
strict=False,
)
angles = zip(
create_random_polar_angles(n_voxels, rng),
create_random_polar_angles(n_voxels, rng),
strict=False,
)

if dominant:
fractions = create_two_fiber_dominant_random_volume_fractions(n_voxels, rng)
else:
fractions = create_two_fiber_nondominant_random_volume_fractions(n_voxels, rng)

signal = np.vstack(
[
multi_tensor(
gtab, _eignvls, S0=S0, angles=_angles, fractions=_fractions, snr=snr, rng=rng
)[0]
for _angles, _eignvls, _fractions in zip(angles, evals, fractions, strict=True)
]
)

return signal


def simulate_three_fiber_multivoxel(gtab, S0, snr, n_voxels, rng):
"""Create three-fiber multi-voxel DWI signal."""

evals = zip(
create_random_diffusivity_eigenvalues(n_voxels, rng),
create_random_diffusivity_eigenvalues(n_voxels, rng),
create_random_diffusivity_eigenvalues(n_voxels, rng),
strict=False,
)
angles = zip(
create_random_polar_angles(n_voxels, rng),
create_random_polar_angles(n_voxels, rng),
create_random_polar_angles(n_voxels, rng),
strict=False,
)
fractions = create_three_fiber_random_volume_fractions(n_voxels, rng)

signal = np.vstack(
[
multi_tensor(
gtab, _eignvls, S0=S0, angles=_angles, fractions=_fractions, snr=snr, rng=rng
)[0]
for _angles, _eignvls, _fractions in zip(angles, evals, fractions, strict=True)
]
)

return signal


def simulate_multifiber_voxels(S0, hsph_dirs, bval_shell=1000, snr=20, n_voxels=1, seed=None):
"""Create a DWI signal with multiple tensors."""

# Create a gradient table for a single-shell
gtab = create_single_shell_gradient_table(hsph_dirs, bval_shell)

rng = np.random.default_rng(seed)

# Generate the number of fibers on each voxel from a uniform distribution
n_fibers = rng.integers(1, 4, size=n_voxels)
unique, counts = np.unique(n_fibers, return_counts=True)

signal = []
# Loop over the voxels to create the signals
for _unique, _counts in zip(unique, counts, strict=False):
if _unique == 1:
_signal = simulate_one_fiber_multivoxel(gtab, S0, snr, n_voxels, rng)
elif _unique == 2:
# Set a number of voxels where volume fractions will be similar vs.
# others with a very dominant fiber
count_nondominant_vf = rng.integers(1, _counts + 1, size=1).item()
count_dominant_vf = _counts - count_nondominant_vf
signal_nondominant_vf = simulate_two_fiber_multivoxel(
gtab, S0, snr, count_nondominant_vf, rng, False
)
signal_dominant_vf = simulate_two_fiber_multivoxel(
gtab, S0, snr, count_dominant_vf, rng, True
)
_signal = np.vstack([signal_nondominant_vf, signal_dominant_vf])
elif _unique == 3:
_signal = simulate_three_fiber_multivoxel(gtab, S0, snr, _counts, rng)
else:
raise NotImplementedError(
"Diffusion gradient-encoding signal generation not implemented "
f"for more than 3 fibers: {_unique}"
)

signal.append(_signal)

# Shuffle voxels
signal = rng.permutation(np.vstack(signal))

return signal, gtab


def serialize_dwi(dwi_data, dwi_data_fname, affine: np.ndarray | None = None):
"""Serialize DWI data.
Expand Down

0 comments on commit fa57a64

Please sign in to comment.