Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PT FE] Add aten::rot90 #28224

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions src/frontends/pytorch/src/op/rot90.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "openvino/core/validation_util.hpp"
#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/range.hpp"
#include "openvino/op/scatter_elements_update.hpp"
#include "openvino/op/shape_of.hpp"
#include "openvino/op/split.hpp"
#include "openvino/op/transpose.hpp"
#include "openvino/op/unsqueeze.hpp"
#include "utils.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_rot90(const NodeContext& context) {
num_inputs_check(context, 1, 3);
auto input = context.get_input(0);
int k = context.input_is_none(1) ? 1 : context.const_input<int32_t>(1);

auto dims = context.input_is_none(2) ? context.mark_node(v0::Constant::create(element::i32, Shape{2}, {0, 1}))
: get_input_as_i32(context, 2);

auto ndims = 0;
if (input.get_partial_shape().rank().is_static()) {
ndims = input.get_partial_shape().rank().get_length();
}

PYTORCH_OP_CONVERSION_CHECK(ndims >= 2, "Expected total dims >= 2, but got total dims = ", ndims);

std::shared_ptr<ov::Node> rank =
std::make_shared<ov::op::v0::Constant>(ov::element::i32,
ov::Shape{},
std::vector<int32_t>{static_cast<int32_t>(ndims)});

auto dims_norm = normalize_axis(context, dims, rank);

auto start = v0::Constant::create(element::i32, {}, {0});
auto step = v0::Constant::create(element::i32, {}, {1});
auto range = std::make_shared<v4::Range>(start, rank, step, element::i32);
auto axis_0 = v0::Constant::create(element::i32, Shape{}, {0});
auto split = std::make_shared<v1::Split>(dims_norm, axis_0, 2);
auto dim0_node = std::make_shared<v0::Unsqueeze>(split->output(0), axis_0);
auto dim1_node = std::make_shared<v0::Unsqueeze>(split->output(1), axis_0);
auto indices = std::make_shared<v0::Concat>(OutputVector{dim0_node, dim1_node}, 0);
auto updates = std::make_shared<v0::Concat>(OutputVector{dim1_node, dim0_node}, 0);

Output<Node> scatter = std::make_shared<v3::ScatterElementsUpdate>(range, indices, updates, axis_0);

k = k % 4;
Output<Node> rotated;
if (k == 1 || k == 3) {
Output<Node> flip_dims = (k == 1) ? dim1_node : dim0_node;
auto flipped = create_flip(input, flip_dims);
rotated = context.mark_node(std::make_shared<v1::Transpose>(flipped, scatter));
} else if (k == 2) {
rotated = create_flip(input, dims_norm);
} else {
rotated = input;
}

return {rotated};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -200,6 +200,7 @@ OP_CONVERTER(translate_reshape_as);
OP_CONVERTER(translate_rnn);
OP_CONVERTER(translate_roi_align);
OP_CONVERTER(translate_roll);
OP_CONVERTER(translate_rot90);
OP_CONVERTER(translate_round);
OP_CONVERTER(translate_rsqrt);
OP_CONVERTER(translate_rsub);
Expand Down Expand Up @@ -624,6 +625,7 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::rnn_relu", op::translate_rnn},
{"aten::rnn_tanh", op::translate_rnn},
{"aten::roll", op::translate_roll},
{"aten::rot90", op::translate_rot90},
{"aten::round", op::translate_round},
{"aten::rsqrt", op::optional_out<op::translate_rsqrt, 1>},
{"aten::rsqrt_", op::inplace_op<op::translate_rsqrt>},
Expand Down
9 changes: 9 additions & 0 deletions src/frontends/pytorch/src/utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,15 @@ Output<Node> normalize_axis(const NodeContext& context, const Output<Node>& axis
}
}

Output<Node> create_flip(const Output<Node>& x, const Output<Node>& axis) {
auto minus_one = v0::Constant::create(element::i32, Shape{}, {-1});
auto minimum_int = v0::Constant::create(element::i32, Shape{}, {std::numeric_limits<int>::min()});
auto axis_shape = std::make_shared<v3::ShapeOf>(axis, element::i32);
auto start = std::make_shared<v3::Broadcast>(minus_one, axis_shape);
auto stop = std::make_shared<v3::Broadcast>(minimum_int, axis_shape);
return std::make_shared<v8::Slice>(x, start, stop, start, axis);
};

std::shared_ptr<Node> numel(const NodeContext& context, const Output<Node>& x, element::Type output_type) {
auto input_shape = context.mark_node(std::make_shared<v3::ShapeOf>(x, output_type));
auto axes = context.mark_node(v0::Constant::create(output_type, Shape({1}), {0}));
Expand Down
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,8 @@ std::shared_ptr<Node> get_node_axes_range(const NodeContext& context, const Outp

Output<Node> normalize_axis(const NodeContext& context, const Output<Node>& axis, const Output<Node>& input_node);

Output<Node> create_flip(const Output<Node>& x, const Output<Node>& axis);

std::shared_ptr<Node> numel(const NodeContext& context,
const Output<Node>& x,
element::Type output_type = element::i32);
Expand Down
38 changes: 38 additions & 0 deletions tests/layer_tests/pytorch_tests/test_rot90.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Copyright (C) 2018-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import numpy as np

from pytorch_layer_test_class import PytorchLayerTest


class TestRot90(PytorchLayerTest):
def _prepare_input(self):

x = np.arange(24).reshape(2, 3, 4).astype(np.float32)
return (x,)

def create_model(self, k, dims):
import torch

class aten_rot90(torch.nn.Module):
def __init__(self, k=1, dims=(0, 1)):
super(aten_rot90, self).__init__()
self.k = k
self.dims = dims

def forward(self, x):
return torch.rot90(x, self.k, self.dims)

ref_net = None
return aten_rot90(k, dims), ref_net, "aten::rot90"

@pytest.mark.parametrize("k", [1, 2, 3, 4, 5])
@pytest.mark.parametrize("dims", [(0, 1), (0, 2), (1, 2)])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_rot90(self, k, dims, ie_device, precision, ir_version):
self._test(*self.create_model(k, dims), ie_device, precision, ir_version,
trace_model=True,dynamic_shapes=False)
Loading