Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Import examples from optuna/optuna-dashboard #224

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions dashboard/hitl/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
import os
import textwrap
import time
from typing import NoReturn

import optuna
from optuna.artifacts import FileSystemArtifactStore
from optuna.artifacts import upload_artifact
from optuna.trial import TrialState
from optuna_dashboard import ChoiceWidget
from optuna_dashboard import register_objective_form_widgets
from optuna_dashboard import save_note
from optuna_dashboard.artifact import get_artifact_path
from PIL import Image


def suggest_and_generate_image(
study: optuna.Study, artifact_store: FileSystemArtifactStore
) -> None:
# 1. Ask new parameters
trial = study.ask()
r = trial.suggest_int("r", 0, 255)
g = trial.suggest_int("g", 0, 255)
b = trial.suggest_int("b", 0, 255)

# 2. Generate image
image_path = f"tmp/sample-{trial.number}.png"
image = Image.new("RGB", (320, 240), color=(r, g, b))
image.save(image_path)

# 3. Upload Artifact
artifact_id = upload_artifact(trial, image_path, artifact_store)
artifact_path = get_artifact_path(trial, artifact_id)

# 4. Save Note
note = textwrap.dedent(
f"""\
## Trial {trial.number}

![generated-image]({artifact_path})
"""
)
save_note(trial, note)


def start_optimization(artifact_store: FileSystemArtifactStore) -> NoReturn:
# 1. Create Study
study = optuna.create_study(
study_name="Human-in-the-loop Optimization",
storage="sqlite:///db.sqlite3",
sampler=optuna.samplers.TPESampler(constant_liar=True, n_startup_trials=5),
load_if_exists=True,
)

# 2. Set an objective name
study.set_metric_names(["Looks like sunset color?"])

# 3. Register ChoiceWidget
register_objective_form_widgets(
study,
widgets=[
ChoiceWidget(
choices=["Good 👍", "So-so👌", "Bad 👎"],
values=[-1, 0, 1],
description="Please input your score!",
),
],
)

# 4. Start Human-in-the-loop Optimization
n_batch = 4
while True:
running_trials = study.get_trials(deepcopy=False, states=(TrialState.RUNNING,))
if len(running_trials) >= n_batch:
time.sleep(1) # Avoid busy-loop
continue
suggest_and_generate_image(study, artifact_store)


def main() -> NoReturn:
tmp_path = os.path.join(os.path.dirname(__file__), "tmp")

# 1. Create Artifact Store
artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
artifact_store = FileSystemArtifactStore(artifact_path)

if not os.path.exists(artifact_path):
os.mkdir(artifact_path)

if not os.path.exists(tmp_path):
os.mkdir(tmp_path)

# 2. Run optimize loop
start_optimization(artifact_store)


if __name__ == "__main__":
main()
2 changes: 2 additions & 0 deletions dashboard/preferential-optimization/evaluator.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
#!/usr/bin/env sh
optuna-dashboard sqlite:///example.db --artifact-dir ./artifact
60 changes: 60 additions & 0 deletions dashboard/preferential-optimization/generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
from __future__ import annotations

import os
import tempfile
import time
from typing import NoReturn

from optuna.artifacts import FileSystemArtifactStore
from optuna.artifacts import upload_artifact
from optuna_dashboard import register_preference_feedback_component
from optuna_dashboard.preferential import create_study
from optuna_dashboard.preferential.samplers.gp import PreferentialGPSampler
from PIL import Image


STORAGE_URL = "sqlite:///example.db"
artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
artifact_store = FileSystemArtifactStore(base_path=artifact_path)
os.makedirs(artifact_path, exist_ok=True)


def main() -> NoReturn:
study = create_study(
n_generate=4,
study_name="Preferential Optimization",
storage=STORAGE_URL,
sampler=PreferentialGPSampler(),
load_if_exists=True,
)
# Change the component, displayed on the human feedback pages.
# By default (component_type="note"), the Trial's Markdown note is displayed.
user_attr_key = "rgb_image"
register_preference_feedback_component(study, "artifact", user_attr_key)

with tempfile.TemporaryDirectory() as tmpdir:
while True:
# If study.should_generate() returns False,
# the generator waits for human evaluation.
if not study.should_generate():
time.sleep(0.1) # Avoid busy-loop
continue

trial = study.ask()
# 1. Ask new parameters
r = trial.suggest_int("r", 0, 255)
g = trial.suggest_int("g", 0, 255)
b = trial.suggest_int("b", 0, 255)

# 2. Generate image
image_path = os.path.join(tmpdir, f"sample-{trial.number}.png")
image = Image.new("RGB", (320, 240), color=(r, g, b))
image.save(image_path)

# 3. Upload Artifact and set artifact_id to trial.user_attrs["rgb_image"].
artifact_id = upload_artifact(trial, image_path, artifact_store)
trial.set_user_attr(user_attr_key, artifact_id)


if __name__ == "__main__":
main()
53 changes: 53 additions & 0 deletions dashboard/streamlit_plugin/rgb_evaluator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
from __future__ import annotations

import os
import shutil
import tempfile
import uuid

import optuna
from optuna.trial import TrialState
from optuna_dashboard.artifact.file_system import FileSystemBackend
from optuna_dashboard.streamlit import render_objective_form_widgets
from optuna_dashboard.streamlit import render_trial_note
import streamlit as st


artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
artifact_backend = FileSystemBackend(base_path=artifact_path)


def get_tmp_dir() -> str:
if "tmp_dir" not in st.session_state:
tmp_dir_name = str(uuid.uuid4())
tmp_dir_path = os.path.join(tempfile.gettempdir(), tmp_dir_name)
os.makedirs(tmp_dir_path, exist_ok=True)
st.session_state.tmp_dir = tmp_dir_path

return st.session_state.tmp_dir


def start_streamlit() -> None:
tmpdir = get_tmp_dir()
study = optuna.load_study(
storage="sqlite:///streamlit-db.sqlite3", study_name="Human-in-the-loop Optimization"
)
selected_trial = st.sidebar.selectbox("Trial", study.trials, format_func=lambda t: t.number)

if selected_trial is None:
return
render_trial_note(study, selected_trial)
artifact_id = selected_trial.user_attrs.get("artifact_id")
if artifact_id:
with artifact_backend.open(artifact_id) as fsrc:
tmp_img_path = os.path.join(tmpdir, artifact_id + ".png")
with open(tmp_img_path, "wb") as fdst:
shutil.copyfileobj(fsrc, fdst)
st.image(tmp_img_path, caption="Image")

if selected_trial.state == TrialState.RUNNING:
render_objective_form_widgets(study, selected_trial)


if __name__ == "__main__":
start_streamlit()
81 changes: 81 additions & 0 deletions dashboard/streamlit_plugin/rgb_generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
from __future__ import annotations

import os
import tempfile
import time
from typing import NoReturn

import optuna
from optuna.trial import TrialState
from optuna_dashboard import ChoiceWidget
from optuna_dashboard import register_objective_form_widgets
from optuna_dashboard import save_note
from optuna_dashboard.artifact import upload_artifact
from optuna_dashboard.artifact.file_system import FileSystemBackend
from PIL import Image


def suggest_and_generate_image(
study: optuna.Study, artifact_backend: FileSystemBackend, tmpdir: str
) -> None:
# 1. Ask new parameters
trial = study.ask()
r = trial.suggest_int("r", 0, 255)
g = trial.suggest_int("g", 0, 255)
b = trial.suggest_int("b", 0, 255)

# 2. Generate image
image_path = os.path.join(tmpdir, f"sample-{trial.number}.png")
image = Image.new("RGB", (320, 240), color=(r, g, b))
image.save(image_path)

# 3. Upload Artifact
artifact_id = upload_artifact(artifact_backend, trial, image_path)
trial.set_user_attr("artifact_id", artifact_id)

# 4. Save Note
save_note(trial, f"## Trial {trial.number}")


def main() -> NoReturn:
# 1. Create Artifact Store
artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
artifact_backend = FileSystemBackend(base_path=artifact_path)

if not os.path.exists(artifact_path):
os.mkdir(artifact_path)

# 2. Create Study
study = optuna.create_study(
study_name="Human-in-the-loop Optimization",
storage="sqlite:///streamlit-db.sqlite3",
sampler=optuna.samplers.TPESampler(constant_liar=True, n_startup_trials=5),
load_if_exists=True,
)
study.set_metric_names(["Looks like sunset color?"])

# 4. Register ChoiceWidget
register_objective_form_widgets(
study,
widgets=[
ChoiceWidget(
choices=["Good 👍", "So-so👌", "Bad 👎"],
values=[-1, 0, 1],
description="Please input your score!",
),
],
)

# 5. Start Human-in-the-loop Optimization
n_batch = 4
with tempfile.TemporaryDirectory() as tmpdir:
while True:
running_trials = study.get_trials(deepcopy=False, states=(TrialState.RUNNING,))
if len(running_trials) >= n_batch:
time.sleep(1) # Avoid busy-loop
continue
suggest_and_generate_image(study, artifact_backend, tmpdir)


if __name__ == "__main__":
main()