Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

No longer allow implicit optional (mypy) #850

Merged
merged 1 commit into from
Jan 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -49,11 +49,11 @@ repos:
exclude: 'asv_bench'
additional_dependencies: [
# Type stubs
types-python-dateutil,
types-pkg_resources,
types-PyYAML,
types-pkg_resources,
types-python-dateutil,
types-pytz,
typing-extensions==3.10.0.0,
typing-extensions,
# Dependencies that are typed
numpy,
]
Expand Down
90 changes: 49 additions & 41 deletions climpred/classes.py
Original file line number Diff line number Diff line change
Expand Up @@ -980,23 +980,24 @@ def _warn_if_chunked_along_init_member_time(self) -> None:
ndims.remove(d)
if len(ndims) > 0:
msg += (
f"\nConsider chunking embarassingly parallel dimensions such as "
f"\nConsider chunking embarrassingly parallel dimensions such as "
f"{ndims} automatically, i.e. "
f'`{name}.chunk({ndims[0]}="auto").verify(...).'
)
warnings.warn(msg)

def _bootstrap(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
alignment: alignmentType = None,
reference: referenceType = None,
groupby: groupbyType = None,
iterations: int = None,
*,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
alignment: Optional[alignmentType] = None,
reference: Optional[referenceType] = None,
groupby: Optional[groupbyType] = None,
iterations: Optional[int] = None,
sig: int = 95,
resample_dim: str = None,
resample_dim: Optional[str] = None,
**metric_kwargs: metric_kwargsType,
) -> xr.Dataset:
"""PredictionEnsemble.bootstrap() parent method.
Expand Down Expand Up @@ -1167,7 +1168,7 @@ def _bootstrap(
]
results_labels = ["verify skill", "low_ci", "high_ci"]

if reference != []:
if reference:
pvalue = _pvalue_from_distributions(
resampled_skills.drop_sel(skill="initialized"),
resampled_skills.sel(skill="initialized"),
Expand Down Expand Up @@ -1347,11 +1348,12 @@ def get_control(self) -> xr.Dataset:

def verify(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
reference: referenceType = None,
groupby: groupbyType = None,
*,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
reference: Optional[referenceType] = None,
groupby: Optional[groupbyType] = None,
**metric_kwargs: metric_kwargsType,
) -> xr.Dataset:
"""Verify initialized predictions against a configuration of its members.
Expand Down Expand Up @@ -1498,9 +1500,10 @@ def verify(

def _compute_uninitialized(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
*,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
**metric_kwargs: metric_kwargsType,
) -> xr.Dataset:
"""Verify the bootstrapped uninitialized run against itself.
Expand Down Expand Up @@ -1554,8 +1557,9 @@ def _compute_uninitialized(

def _compute_persistence(
self,
metric: metricType = None,
dim: dimType = None,
*,
metric: metricType,
dim: Optional[dimType] = None,
**metric_kwargs: metric_kwargsType,
):
"""Verify a simple persistence forecast of the control run against itself.
Expand Down Expand Up @@ -1630,9 +1634,10 @@ def _compute_persistence(

def _compute_climatology(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
*,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
**metric_kwargs: metric_kwargsType,
) -> xr.Dataset:
"""Verify a climatology forecast.
Expand Down Expand Up @@ -1681,11 +1686,12 @@ def _compute_climatology(

def bootstrap(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
reference: referenceType = None,
groupby: groupbyType = None,
*,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
reference: Optional[referenceType] = None,
groupby: Optional[groupbyType] = None,
iterations: Optional[int] = None,
sig: int = 95,
resample_dim: str = "member",
Expand Down Expand Up @@ -2102,12 +2108,13 @@ def plot_alignment(

def verify(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
alignment: alignmentType = None,
reference: referenceType = None,
groupby: groupbyType = None,
*,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
alignment: Optional[alignmentType] = None,
reference: Optional[referenceType] = None,
groupby: Optional[groupbyType] = None,
**metric_kwargs: metric_kwargsType,
) -> xr.Dataset:
"""Verify the initialized ensemble against observations.
Expand Down Expand Up @@ -2409,12 +2416,13 @@ def _verify(

def bootstrap(
self,
metric: metricType = None,
comparison: comparisonType = None,
dim: dimType = None,
alignment: alignmentType = None,
reference: referenceType = None,
groupby: groupbyType = None,
*,
alignment: alignmentType,
metric: metricType,
comparison: comparisonType,
dim: Optional[dimType] = None,
reference: Optional[referenceType] = None,
groupby: Optional[groupbyType] = None,
iterations: Optional[int] = None,
sig: int = 95,
resample_dim: str = "member",
Expand Down Expand Up @@ -2541,7 +2549,7 @@ def bootstrap(

def remove_bias(
self,
alignment: alignmentType = None,
alignment: alignmentType,
how: str = "additive_mean",
train_test_split: str = "unfair",
train_init: Optional[Union[xr.DataArray, slice]] = None,
Expand Down
8 changes: 7 additions & 1 deletion climpred/prediction.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,13 @@ def _sanitize_to_list(dim: Union[str, Set, Tuple, List, None]) -> Optional[List[
return dim


def _get_metric_comparison_dim(initialized, metric, comparison, dim, kind):
def _get_metric_comparison_dim(
initialized,
metric,
comparison,
dim: Optional[Union[List[str], str]],
kind,
):
"""Return `metric`, `comparison` and `dim` for compute functions.

Args:
Expand Down
6 changes: 3 additions & 3 deletions climpred/preprocessing/shared.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Any, Callable, Union
from typing import Any, Callable, Optional, Union

import numpy as np
import xarray as xr
Expand All @@ -10,10 +10,10 @@
def load_hindcast(
inits=range(1961, 1965, 1),
members=range(1, 3, 1),
preprocess: Callable = None,
preprocess: Optional[Callable] = None,
lead_offset: int = 1,
parallel: bool = True,
engine: str = None,
engine: Optional[str] = None,
get_path: Callable = get_path_mpi,
**get_path_kwargs: Any,
) -> Union[xr.DataArray, xr.Dataset]:
Expand Down
4 changes: 2 additions & 2 deletions climpred/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def assign_attrs(
dim=None,
**kwargs,
):
"""Write information about prediction skill into attrs.
r"""Write information about prediction skill into attrs.

Args:
skill (`xarray` object): prediction skill.
Expand All @@ -75,7 +75,7 @@ def assign_attrs(
metric (class) : metric used in comparing the forecast and verification data.
comparison (class): how to compare the forecast and verification data.
dim (str): Dimension over which metric was applied.
kwargs (dict): other information
\*\*kwargs : other information

Returns:
skill (`xarray` object): prediction skill with additional attrs.
Expand Down
Loading