Skip to content

Commit

Permalink
[software] Merge libraries for data generation
Browse files Browse the repository at this point in the history
  • Loading branch information
mbertuletti committed Nov 25, 2024
1 parent a76f158 commit a961505
Show file tree
Hide file tree
Showing 7 changed files with 777 additions and 435 deletions.
24 changes: 21 additions & 3 deletions software/data/README.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,29 @@
# Data Generation

Data for mempool applications is generated with the `gendata_header.py` script.
The `gendata_*.py` libaries contain the golden models for the applications under test.
The application parameters are passed to the script by means of the `gendata_params.hjson` file.
The `gendatalib.py` libaries generate random inputs and a reference golden model for the applications under test.
The application parameters are passed to the script with the `gendata_params.hjson` file.

An example entry follows: `matmul_f32` is the name of MemPool application under test, the `type` refers to numpy precision, the `defines` are application parameters, turned into C constant declarations in the form `#define matrix_M (16)`, the `arrays` encode the C-type and name of input vectors for the application under test.

`
"matmul_f32": {
"type": "float32",
"defines": [
("matrix_M", 16)
("matrix_N", 16)
("matrix_P", 16)
]
"arrays": [
("float", "l2_A")
("float", "l2_B")
("float", "l2_C")
]
}
`

## To test a new application:
If a new application requires to be tested with data generated from a reference golden model:
- Add a new golden model to the existing libraries, or create a new one.
- Add a new golden model to the existing library `gendatalib.py`.
- Add a golden model function call to the `gendata_header.py`.
- Add a new item in the `gendata_params.hjson` to make function parameters configurable.
211 changes: 87 additions & 124 deletions software/data/gendata_header.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,14 +9,11 @@

import argparse
import os
import math
import hjson
import ast
import numpy

import gendatalib_cfft as cfft
import gendatalib_chest as chest
import gendatalib_blas as blas
import gendatalib as datalib


header = """\
Expand All @@ -29,34 +26,58 @@
"""


def print_array(arr, typ, name):

def format_type(typ, value):
"""
formats the type for printing in .h file.
:param typ: Input type
:param value: Input_value
"""
typ_i32b = ["int32_t", "uint32_t"]
typ_i16b = ["int16_t", "uint16_t"]
typ_i8b = ["int8_t", "uint8_t"]

if typ in typ_i32b:
stringyfied_val = '({}) 0X{:08X}'.format(typ, value & 0xffffffff)
elif typ in typ_i16b:
stringyfied_val = '({}) 0X{:04X}'.format(typ, value & 0x0000ffff)
elif typ in typ_i8b:
stringyfied_val = '({}) 0X{:02X}'.format(typ, value & 0x000000ff)
elif typ == 'float':
stringyfied_val = '({}) {:+.8f}'.format(typ, value)
elif typ == '__fp16':
stringyfied_val = '({}) {:+.4f}'.format(typ, value)
else:
raise Exception("ERROR: Unsupported data type!!!")

return stringyfied_val


def print_array(arr, typ, name):
"""
Converts arrays to a string.
:param arr: Input array
:param typ: Type of the array.
:param name: Name of the array.
"""

output_string = typ
attr = " __attribute__((aligned(sizeof(int32_t)), section(\".l2\"))) "
output_string += attr
output_string += name + '[{}] = {{\n'.format(arr.size)
for (value, count) in zip(arr, range(arr.size)):
if typ in typ_i32b:
output_string += '({}) 0X{:08X}, '.format(typ, value & 0xffffffff)
elif typ in typ_i16b:
output_string += '({}) 0X{:04X}, '.format(typ, value & 0x0000ffff)
elif typ in typ_i8b:
output_string += '({}) 0X{:02X}, '.format(typ, value & 0x000000ff)
elif typ == 'float':
output_string += '({}) {:+.8f}, '.format(typ, value)
elif typ == '__fp16':
output_string += '({}) {:+.4f}, '.format(typ, value)
else:
raise Exception("ERROR: Unsupported data type!!!")
count += 1
if count % 4 == 0:
output_string += '\n'
output_string = output_string[:-3]
output_string += "};\n\n"
if (arr.size > 1):
output_string += attr
output_string += name + '[{}] = {{\n'.format(arr.size)
for (value, count) in zip(arr, range(arr.size)):
output_string += (format_type(typ, value) + ', ')
count += 1
if count % 4 == 0:
output_string += '\n'
output_string = output_string[:-3]
output_string += "};\n\n"
else:
output_string += attr
output_string += (name + ' = ' + format_type(typ, arr))
output_string += ";\n\n"

return output_string


Expand All @@ -74,8 +95,8 @@ def print_file(header, defines, arrays, filename):
output_string = header

# Write the defines
for define_name, define_value in defines:
output_string += "#define {} ({})\n".format(define_name, define_value)
for def_key, def_value in defines.items():
output_string += "#define {} ({})\n".format(def_key, def_value)
output_string += "\n" # Add space between defines and arrays

# Write the arrays using print_array
Expand All @@ -90,6 +111,10 @@ def print_file(header, defines, arrays, filename):


def get_type(type_string):
"""
Gets the numpy type from the type specifyied in the json
:param type_string: type from json file.
"""
if type_string == "int8":
return numpy.int8
elif type_string == "int16":
Expand Down Expand Up @@ -120,107 +145,45 @@ def get_type(type_string):

if data_args is not None:
my_type = get_type(data_args.get("type"))
defnes = [ast.literal_eval(defne)
for defne in data_args.get("defines")]
arrays = [ast.literal_eval(array)
for array in data_args.get("arrays")]
defnes = dict([ast.literal_eval(defne)
for defne in data_args.get("defines")])
arrays = [ast.literal_eval(array) for array in data_args.get("arrays")]

# Determine output file name
filename = os.path.dirname(os.path.abspath(__file__))
filename = os.path.join(filename, "data_{}.h".format(app_name))

# Generate data header file
if app_name == "axpy_i32":

result = blas.generate_iaxpy(**{name: value for name, value in defnes})
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "cfft_radix4_q16":

result = cfft.generate_cfft_q16(
**{name: value for name, value in defnes})
N = defnes[0][1]
defnes += [
("LOG2", int(math.log2(N))),
("N_TWIDDLES", 3 * N // 4),
("BITREVINDEXTABLE_LENGTH", len(result[3])),
("TOLERANCE", result[4]),
]
result = result[0:4]
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "cfft_radix2_q16":

result = cfft.generate_cfft_q16(
**{name: value for name, value in defnes})
N = defnes[0][1]
defnes += [
("LOG2", int(math.log2(N))),
("N_TWIDDLES", 3 * N // 4),
("BITREVINDEXTABLE_LENGTH", len(result[3])),
("TOLERANCE", result[4]),
]
result = result[0:4]
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "chest_q16":

result = chest.generate_chest_q16(
**{name: value for name, value in defnes})
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "cholesky_q32":

result = blas.generate_qcholesky(
**{name: value for name, value in defnes})
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "matmul_f16":

result = blas.generate_fmatmul(
**{name: value for name, value in defnes}, my_type=my_type)
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "matmul_f32":

result = blas.generate_fmatmul(
**{name: value for name, value in defnes}, my_type=my_type)
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "matmul_i32":

result = blas.generate_imatmul(
**{name: value for name, value in defnes}, my_type=my_type)
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "matmul_i16":

result = blas.generate_imatmul(
**{name: value for name, value in defnes}, my_type=my_type)
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif app_name == "matmul_i8":

result = blas.generate_imatmul(
**{name: value for name, value in defnes}, my_type=my_type)
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

elif (app_name == "fence") | (app_name == "memcpy"):

result = blas.generate_iarray(
**{name: value for name, value in defnes}, my_type=my_type)
arrays = [(result, *arrays[0])]
# Define function mappings for each app_name
function_map = {
"axpy_i32": {"func": datalib.generate_iaxpy},
"cfft_radix4_q16": {"func": datalib.generate_cfft_q16},
"cfft_radix2_q16": {"func": datalib.generate_cfft_q16},
"chest_q16": {"func": datalib.generate_qchest},
"cholesky_q32": {"func": datalib.generate_qcholesky},
"dotp_i32": {"func": datalib.generate_idotp},
"matmul_f16": {"func": datalib.generate_fmatmul},
"matmul_f32": {"func": datalib.generate_fmatmul},
"matmul_i32": {"func": datalib.generate_imatmul},
"matmul_i16": {"func": datalib.generate_imatmul},
"matmul_i8": {"func": datalib.generate_imatmul},
"fence": {"func": datalib.generate_iarray},
"memcpy": {"func": datalib.generate_iarray},
}

# Check if app_name exists in the function map
if app_name in function_map:
func_info = function_map[app_name]
func = func_info["func"]
# Call the function
# The defnes dictionary is a function argument in case the generate
# function adds new definitions.
result, defnes = func(defines=defnes, my_type=my_type)
# Print result to data header
if len(arrays) == 1:
arrays = [(result, *arrays[0])]
else:
arrays = [(result[i], *arrays[i]) for i in range(len(arrays))]
print_file(header, defnes, arrays, filename)

else:
print("No need for data generation.")
print("Data generation is not defined.")
Loading

0 comments on commit a961505

Please sign in to comment.