Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

For review only: Build torch_tensorrt for jetpack6.0, do not merge #3139

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions .github/scripts/build_jetson_6.0.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
#!/usr/bin/env bash

set -euxo pipefail

# get jetpack version: eg: Version: 6.0+b106 ---> 6.0
jetpack_version=$(apt show nvidia-jetpack 2>/dev/null | grep Version: | cut -d ' ' -f 2 | cut -d '+' -f 1)
python_version=$(python --version)
cuda_version=$(nvcc --version | grep Cuda | grep release | cut -d ',' -f 2 | sed -e 's/ release //g')
echo "Current jetpack_version: ${jetpack_version} cuda_version: ${cuda_version} python_version: ${python_version} "

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/lib/aarch64-linux-gnu:/usr/include/aarch64-linux-gnu:/usr/local/cuda-${cuda_version}/lib64

# make sure nvidia-jetpack dev package is installed:
# go to /usr/include/aarch64-linux-gnu/ if you can see NvInfer.h(tensorrt related header files) which means dev package is installed
# if not installed, install via the below cmd:
# sudo apt update
# sudo apt install nvidia-jetpack

# make sure cuda is installed:
# nvcc --version or go to /usr/local/cuda/bin to see whether it is installed
# the install nvidia-jetpack dev package step will automatically install the cuda tool
# if not installed, install via the below cmd:
# sudo apt update
# sudo apt install cuda-toolkit-12-2

# make sure bazel is installed via the below cmd:
# wget -v https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-linux-arm64
# sudo mv bazelisk-linux-arm64 /usr/bin/bazel
# chmod +x /usr/bin/bazel

# make sure setuptools is installed
# sudo apt install python3-pip
# make sure setuptools is upgraded via the below cmd:
# pip install -U pip setuptools

# make sure torch is installed via the below cmd:
# wget https://developer.download.nvidia.cn/compute/redist/jp/v60/pytorch/torch-2.4.0a0+3bcc3cddb5.nv24.07.16234504-cp310-cp310-linux_aarch64.whl
# python -m pip install torch-2.4.0a0+3bcc3cddb5.nv24.07.16234504-cp310-cp310-linux_aarch64.whl

# make sure libcusparseLt.so exists if not download and copy via the below cmd:
# wget https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz
# tar xf libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz
# sudo cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/include/* /usr/local/cuda/include/
# sudo cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/lib/* /usr/local/cuda/lib64/

# make sure tensorrt is upgraded from 8.6.2 to tensorrt10.1.0
# wget http://cuda-repo/release-candidates/Libraries/TensorRT/v10.1/10.1.0.16-e64cb73a/12.4-r550/l4t-aarch64/tar/TensorRT-10.1.0.16.Ubuntu-22.04.aarch64-gnu.cuda-12.4.tar.gz
# gunzip TensorRT-10.1.0.16.Ubuntu-22.04.aarch64-gnu.cuda-12.4.tar.gz
# tar xvf TensorRT-10.1.0.16.Ubuntu-22.04.aarch64-gnu.cuda-12.4.tar

# copy tensorrt 10.1.0 header files to /usr/include/aarch64-linux-gnu/:
# cd ~/Desktop/lan/Downloads/TensorRT-10.1.0.16/include
# sudo cp * /usr/include/aarch64-linux-gnu/

# copy tensorrt 10.1.0 .so files to /usr/lib/aarch64-linux-gnu/:
# cd ~/Desktop/lan/Downloads/TensorRT-10.1.0.16/lib
# sudo cp libnvinfer.so.10.1.0 /usr/lib/aarch64-linux-gnu/
# sudo cp libnvinfer_plugin.so.10.1.0 /usr/lib/aarch64-linux-gnu/
# sudo cp libnvinfer_vc_plugin.so.10.1.0 /usr/lib/aarch64-linux-gnu/
# sudo cp libnvonnxparser.so.10.1.0 /usr/lib/aarch64-linux-gnu/
# sudo cp libnvinfer_lean.so.10.1.0 /usr/lib/aarch64-linux-gnu/
# sudo cp libnvinfer_dispatch.so.10.1.0 /usr/lib/aarch64-linux-gnu/
# sudo cp libnvinfer_builder_resource.so.10.1.0 /usr/lib/aarch64-linux-gnu/

# copy tensorrt 10.1.0 *_static.a and stubs to /usr/lib/aarch64-linux-gnu/:
# cd ~/Desktop/lan/Downloads/TensorRT-10.1.0.16/lib
# sudo cp stub/* /usr/lib/aarch64-linux-gnu/stub/
# sudo cp *_static.a /usr/lib/aarch64-linux-gnu/
# sudo cp libonnx_proto.a /usr/lib/aarch64-linux-gnu/

# create symbolic link under /usr/lib/aarch64-linux-gnu/:
# cd /usr/lib/aarch64-linux-gnu/
# sudo ln -s libnvinfer.so.10.1.0 libnvinfer.so
# sudo ln -s libnvinfer_plugin.so.10.1.0 libnvinfer_plugin.so
# sudo ln -s libnvinfer_vc_plugin.so.10.1.0 libnvinfer_vc_plugin.so
# sudo ln -s libnvonnxparser.so.10.1.0 libnvonnxparser.so
# sudo ln -s libnvinfer_lean.so.10.1.0 libnvinfer_lean.so
# sudo ln -s libnvinfer_dispatch.so.10.1.0 libnvinfer_dispatch.so


export TORCH_INSTALL_PATH=$(python -c "import torch, os; print(os.path.dirname(torch.__file__))")
export SITE_PACKAGE_PATH=${TORCH_INSTALL_PATH::-6}
# replace the WORKSPACE file with jetpack one
cat WORKSPACE > WORKSPACE.orig
cat toolchains/jp_workspaces/WORKSPACE.jp60 | envsubst > WORKSPACE

# build on jetpack
python setup.py --use-cxx11-abi install --user

11 changes: 8 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,12 +152,14 @@ def load_dep_info():
JETPACK_VERSION = "4.6"
elif version == "5.0":
JETPACK_VERSION = "5.0"
elif version == "6.0":
JETPACK_VERSION = "6.0"

if not JETPACK_VERSION:
warnings.warn(
"Assuming jetpack version to be 5.0, if not use the --jetpack-version option"
"Assuming jetpack version to be 6.0, if not use the --jetpack-version option"
)
JETPACK_VERSION = "5.0"
JETPACK_VERSION = "6.0"

if not CXX11_ABI:
warnings.warn(
Expand Down Expand Up @@ -209,12 +211,15 @@ def build_libtorchtrt_pre_cxx11_abi(
elif JETPACK_VERSION == "5.0":
cmd.append("--platforms=//toolchains:jetpack_5.0")
print("Jetpack version: 5.0")
elif JETPACK_VERSION == "6.0":
cmd.append("--platforms=//toolchains:jetpack_6.0")
print("Jetpack version: 6.0")

if CI_BUILD:
cmd.append("--platforms=//toolchains:ci_rhel_x86_64_linux")
print("CI based build")

print("building libtorchtrt")
print(f"building libtorchtrt {cmd=}")
status_code = subprocess.run(cmd).returncode

if status_code != 0:
Expand Down
9 changes: 9 additions & 0 deletions toolchains/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,15 @@ platform(
],
)

platform(
name = "jetpack_6.0",
constraint_values = [
"@platforms//os:linux",
"@platforms//cpu:aarch64",
"@//toolchains/jetpack:4.6",
],
)

platform(
name = "ci_rhel_x86_64_linux",
constraint_values = [
Expand Down
92 changes: 92 additions & 0 deletions toolchains/jp_workspaces/WORKSPACE.jp60
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
workspace(name = "Torch-TensorRT")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use the MODULE.bazel format now

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@narendasan
since there is only torch2.4 nvidia wheel downloadable, so I tested this change on top of the release/2.4 branch which is still using the WORKSPACE.
I will change to the main branch using MODULE.bazel once torch2.5 nvidia wheel is available for download.


load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(
name = "rules_python",
sha256 = "863ba0fa944319f7e3d695711427d9ad80ba92c6edd0b7c7443b84e904689539",
strip_prefix = "rules_python-0.22.0",
url = "https://github.com/bazelbuild/rules_python/releases/download/0.22.0/rules_python-0.22.0.tar.gz",
)

load("@rules_python//python:repositories.bzl", "py_repositories")

py_repositories()

http_archive(
name = "rules_pkg",
sha256 = "8f9ee2dc10c1ae514ee599a8b42ed99fa262b757058f65ad3c384289ff70c4b8",
urls = [
"https://mirror.bazel.build/github.com/bazelbuild/rules_pkg/releases/download/0.9.1/rules_pkg-0.9.1.tar.gz",
"https://github.com/bazelbuild/rules_pkg/releases/download/0.9.1/rules_pkg-0.9.1.tar.gz",
],
)

load("@rules_pkg//:deps.bzl", "rules_pkg_dependencies")

rules_pkg_dependencies()

http_archive(
name = "googletest",
sha256 = "755f9a39bc7205f5a0c428e920ddad092c33c8a1b46997def3f1d4a82aded6e1",
strip_prefix = "googletest-5ab508a01f9eb089207ee87fd547d290da39d015",
urls = ["https://github.com/google/googletest/archive/5ab508a01f9eb089207ee87fd547d290da39d015.zip"],
)

# External dependency for torch_tensorrt if you already have precompiled binaries.
local_repository(
name = "torch_tensorrt",
path = "${SITE_PACKAGE_PATH}/torch_tensorrt",
)

# CUDA should be installed on the system locally
new_local_repository(
name = "cuda",
build_file = "@//third_party/cuda:BUILD",
path = "/usr/local/cuda-12.2/",
)

####################################################################################
# Locally installed dependencies (use in cases of custom dependencies or aarch64)
####################################################################################

# NOTE: In the case you are using just the pre-cxx11-abi path or just the cxx11 abi path
# with your local libtorch, just point deps at the same path to satisfy bazel.

# NOTE: NVIDIA's aarch64 PyTorch (python) wheel file uses the CXX11 ABI unlike PyTorch's standard
# x86_64 python distribution. If using NVIDIA's version just point to the root of the package
# for both versions here and do not use --config=pre-cxx11-abi

new_local_repository(
name = "libtorch",
path = "${TORCH_INSTALL_PATH}",
build_file = "third_party/libtorch/BUILD"
)

# NOTE: Unused on aarch64-jetson with NVIDIA provided PyTorch distribu†ion
new_local_repository(
name = "libtorch_pre_cxx11_abi",
path = "${TORCH_INSTALL_PATH}",
build_file = "third_party/libtorch/BUILD"
)

new_local_repository(
name = "tensorrt",
path = "/usr/",
build_file = "@//third_party/tensorrt/local:BUILD"
)

#########################################################################
# Development Dependencies (optional - comment out on aarch64)
#########################################################################

load("@rules_python//python:pip.bzl", "pip_parse")

pip_parse(
name = "devtools_deps",
requirements = "//:requirements-dev.txt",
)

load("@devtools_deps//:requirements.bzl", "install_deps")

install_deps()
Loading