Skip to content

Adding support for MOMENTUM_DIFF and ROWWISE_ADAGRAD optimizer states #3144

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion torchrec/distributed/embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -1515,7 +1515,7 @@ def compute_and_output_dist(
):
embs = lookup(features)
if self.post_lookup_tracker_fn is not None:
self.post_lookup_tracker_fn(features, embs)
self.post_lookup_tracker_fn(self, features, embs)

with maybe_annotate_embedding_event(
EmbeddingEvent.OUTPUT_DIST, self._module_fqn, sharding_type
Expand Down
51 changes: 48 additions & 3 deletions torchrec/distributed/embedding_lookup.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
import logging
from abc import ABC
from collections import OrderedDict
from typing import Any, cast, Dict, Iterator, List, Optional, Tuple, Union
from typing import Any, Callable, cast, Dict, Iterator, List, Optional, Tuple, Union

import torch
import torch.distributed as dist
Expand Down Expand Up @@ -206,6 +206,10 @@ def __init__(
)

self.grouped_configs = grouped_configs
# Model tracker function to tracker optimizer state
self.optim_state_tracker_fn: Optional[
Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None]
] = None

def _create_embedding_kernel(
self,
Expand Down Expand Up @@ -305,7 +309,13 @@ def forward(
self._feature_splits,
)
for emb_op, features in zip(self._emb_modules, features_by_group):
embeddings.append(emb_op(features).view(-1))
lookup = emb_op(features).view(-1)
embeddings.append(lookup)

# Model tracker optimizer state function, will only be set called
# when model tracker is configured to track optimizer state
if self.optim_state_tracker_fn is not None:
self.optim_state_tracker_fn(emb_op, features, lookup)

return embeddings_cat_empty_rank_handle(embeddings, self._dummy_embs_tensor)

Expand Down Expand Up @@ -409,6 +419,19 @@ def purge(self) -> None:
# pyre-fixme[29]: `Union[Module, Tensor]` is not a function.
emb_module.purge()

def register_optim_state_tracker_fn(
self,
record_fn: Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None],
) -> None:
"""
Model tracker function to tracker optimizer state

Args:
record_fn (Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None]): A custom record function to be called after lookup is done.

"""
self.optim_state_tracker_fn = record_fn


class CommOpGradientScaling(torch.autograd.Function):
@staticmethod
Expand Down Expand Up @@ -481,6 +504,10 @@ def __init__(
if scale_weight_gradients and get_gradient_division()
else 1
)
# Model tracker function to tracker optimizer state
self.optim_state_tracker_fn: Optional[
Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None]
] = None

def _create_embedding_kernel(
self,
Expand Down Expand Up @@ -608,7 +635,12 @@ def forward(
features._weights, self._scale_gradient_factor
)

embeddings.append(emb_op(features))
lookup = emb_op(features)
embeddings.append(lookup)
# Model tracker optimizer state function, will only be set called
# when model tracker is configured to track optimizer state
if self.optim_state_tracker_fn is not None:
self.optim_state_tracker_fn(emb_op, features, lookup)

if features.variable_stride_per_key() and len(self._emb_modules) > 1:
stride_per_rank_per_key = list(
Expand Down Expand Up @@ -738,6 +770,19 @@ def purge(self) -> None:
# pyre-fixme[29]: `Union[Module, Tensor]` is not a function.
emb_module.purge()

def register_optim_state_tracker_fn(
self,
record_fn: Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None],
) -> None:
"""
Model tracker function to tracker optimizer state

Args:
record_fn (Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None]): A custom record function to be called after lookup is done.

"""
self.optim_state_tracker_fn = record_fn


class MetaInferGroupedEmbeddingsLookup(
BaseEmbeddingLookup[KeyedJaggedTensor, torch.Tensor], TBEToRegisterMixIn
Expand Down
6 changes: 3 additions & 3 deletions torchrec/distributed/embedding_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,7 @@ def __init__(
self._lookups: List[nn.Module] = []
self._output_dists: List[nn.Module] = []
self.post_lookup_tracker_fn: Optional[
Callable[[KeyedJaggedTensor, torch.Tensor], None]
Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None]
] = None
self.post_odist_tracker_fn: Optional[Callable[..., None]] = None

Expand Down Expand Up @@ -426,14 +426,14 @@ def train(self, mode: bool = True): # pyre-ignore[3]

def register_post_lookup_tracker_fn(
self,
record_fn: Callable[[KeyedJaggedTensor, torch.Tensor], None],
record_fn: Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None],
) -> None:
"""
Register a function to be called after lookup is done. This is used for
tracking the lookup results and optimizer states.

Args:
record_fn (Callable[[KeyedJaggedTensor, torch.Tensor], None]): A custom record function to be called after lookup is done.
record_fn (Callable[[nn.Module, KeyedJaggedTensor, torch.Tensor], None]): A custom record function to be called after lookup is done.

"""
if self.post_lookup_tracker_fn is not None:
Expand Down
2 changes: 1 addition & 1 deletion torchrec/distributed/embeddingbag.py
Original file line number Diff line number Diff line change
Expand Up @@ -1459,7 +1459,7 @@ def compute_and_output_dist(
):
embs = lookup(features)
if self.post_lookup_tracker_fn is not None:
self.post_lookup_tracker_fn(features, embs)
self.post_lookup_tracker_fn(self, features, embs)

with maybe_annotate_embedding_event(
EmbeddingEvent.OUTPUT_DIST,
Expand Down
Loading
Loading