Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix steering controllers library kinematics (backport #1150) #1195

Merged
merged 1 commit into from
Jul 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -173,6 +173,7 @@ TEST_F(AckermannSteeringControllerTest, test_update_logic)
controller_->update(rclcpp::Time(0, 0, RCL_ROS_TIME), rclcpp::Duration::from_seconds(0.01)),
controller_interface::return_type::OK);

// we test with open_loop=false, but steering angle was not updated (is zero) -> same commands
EXPECT_NEAR(
controller_->command_interfaces_[CMD_TRACTION_RIGHT_WHEEL].get_value(), 0.22222222222222224,
COMMON_THRESHOLD);
Expand Down Expand Up @@ -211,8 +212,9 @@ TEST_F(AckermannSteeringControllerTest, test_update_logic_chained)
ASSERT_EQ(
controller_->update(rclcpp::Time(0, 0, RCL_ROS_TIME), rclcpp::Duration::from_seconds(0.01)),
controller_interface::return_type::OK);
EXPECT_NEAR(

// we test with open_loop=false, but steering angle was not updated (is zero) -> same commands
EXPECT_NEAR(
controller_->command_interfaces_[STATE_TRACTION_RIGHT_WHEEL].get_value(), 0.22222222222222224,
COMMON_THRESHOLD);
EXPECT_NEAR(
Expand Down Expand Up @@ -261,6 +263,7 @@ TEST_F(AckermannSteeringControllerTest, receive_message_and_publish_updated_stat
controller_->update(rclcpp::Time(0, 0, RCL_ROS_TIME), rclcpp::Duration::from_seconds(0.01)),
controller_interface::return_type::OK);

// we test with open_loop=false, but steering angle was not updated (is zero) -> same commands
EXPECT_NEAR(
controller_->command_interfaces_[CMD_TRACTION_RIGHT_WHEEL].get_value(), 0.22222222222222224,
COMMON_THRESHOLD);
Expand All @@ -276,6 +279,7 @@ TEST_F(AckermannSteeringControllerTest, receive_message_and_publish_updated_stat

subscribe_and_get_messages(msg);

// we test with open_loop=false, but steering angle was not updated (is zero) -> same commands
EXPECT_NEAR(
msg.linear_velocity_command[CMD_TRACTION_RIGHT_WHEEL], 0.22222222222222224, COMMON_THRESHOLD);
EXPECT_NEAR(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ TEST_F(BicycleSteeringControllerTest, test_update_logic)
controller_interface::return_type::OK);

EXPECT_NEAR(
controller_->command_interfaces_[CMD_TRACTION_WHEEL].get_value(), 0.253221, COMMON_THRESHOLD);
controller_->command_interfaces_[CMD_TRACTION_WHEEL].get_value(), 0.1 / 0.45, COMMON_THRESHOLD);
EXPECT_NEAR(
controller_->command_interfaces_[CMD_STEER_WHEEL].get_value(), 1.4179821977774734,
COMMON_THRESHOLD);
Expand Down Expand Up @@ -190,7 +190,7 @@ TEST_F(BicycleSteeringControllerTest, test_update_logic_chained)
controller_interface::return_type::OK);

EXPECT_NEAR(
controller_->command_interfaces_[CMD_TRACTION_WHEEL].get_value(), 0.253221, COMMON_THRESHOLD);
controller_->command_interfaces_[CMD_TRACTION_WHEEL].get_value(), 0.1 / 0.45, COMMON_THRESHOLD);
EXPECT_NEAR(
controller_->command_interfaces_[CMD_STEER_WHEEL].get_value(), 1.4179821977774734,
COMMON_THRESHOLD);
Expand Down Expand Up @@ -237,22 +237,22 @@ TEST_F(BicycleSteeringControllerTest, receive_message_and_publish_updated_status
EXPECT_EQ(msg.linear_velocity_command[0], 1.1);
EXPECT_EQ(msg.steering_angle_command[0], 2.2);

publish_commands();
publish_commands(0.1, 0.2);
ASSERT_TRUE(controller_->wait_for_commands(executor));

ASSERT_EQ(
controller_->update(rclcpp::Time(0, 0, RCL_ROS_TIME), rclcpp::Duration::from_seconds(0.01)),
controller_interface::return_type::OK);

EXPECT_NEAR(
controller_->command_interfaces_[CMD_TRACTION_WHEEL].get_value(), 0.253221, COMMON_THRESHOLD);
controller_->command_interfaces_[CMD_TRACTION_WHEEL].get_value(), 0.1 / 0.45, COMMON_THRESHOLD);
EXPECT_NEAR(
controller_->command_interfaces_[CMD_STEER_WHEEL].get_value(), 1.4179821977774734,
COMMON_THRESHOLD);

subscribe_and_get_messages(msg);

EXPECT_NEAR(msg.linear_velocity_command[0], 0.253221, COMMON_THRESHOLD);
EXPECT_NEAR(msg.linear_velocity_command[0], 0.1 / 0.45, COMMON_THRESHOLD);
EXPECT_NEAR(msg.steering_angle_command[0], 1.4179821977774734, COMMON_THRESHOLD);
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
#ifndef STEERING_CONTROLLERS_LIBRARY__STEERING_ODOMETRY_HPP_
#define STEERING_CONTROLLERS_LIBRARY__STEERING_ODOMETRY_HPP_

#include <cmath>
#include <tuple>
#include <vector>

Expand All @@ -31,6 +32,9 @@ namespace steering_odometry
const unsigned int BICYCLE_CONFIG = 0;
const unsigned int TRICYCLE_CONFIG = 1;
const unsigned int ACKERMANN_CONFIG = 2;

inline bool is_close_to_zero(double val) { return std::fabs(val) < 1e-6; }

/**
* \brief The Odometry class handles odometry readings
* (2D pose and velocity with related timestamp)
Expand Down Expand Up @@ -183,10 +187,11 @@ class SteeringOdometry
* \brief Calculates inverse kinematics for the desired linear and angular velocities
* \param v_bx Desired linear velocity of the robot in x_b-axis direction
* \param omega_bz Desired angular velocity of the robot around x_z-axis
* \param open_loop If false, the IK will be calculated using measured steering angle
* \return Tuple of velocity commands and steering commands
*/
std::tuple<std::vector<double>, std::vector<double>> get_commands(
const double v_bx, const double omega_bz);
const double v_bx, const double omega_bz, const bool open_loop = true);

/**
* \brief Reset poses, heading, and accumulators
Expand Down Expand Up @@ -225,6 +230,16 @@ class SteeringOdometry
*/
double convert_twist_to_steering_angle(const double v_bx, const double omega_bz);

/**
* \brief Calculates linear velocity of a robot with double traction axle
* \param right_traction_wheel_vel Right traction wheel velocity [rad/s]
* \param left_traction_wheel_vel Left traction wheel velocity [rad/s]
* \param steer_pos Steer wheel position [rad]
*/
double get_linear_velocity_double_traction_axle(
const double right_traction_wheel_vel, const double left_traction_wheel_vel,
const double steer_pos);

/**
* \brief Reset linear and angular accumulators
*/
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -450,7 +450,7 @@ controller_interface::return_type SteeringControllersLibrary::update_and_write_c
last_angular_velocity_ = reference_interfaces_[1];

auto [traction_commands, steering_commands] =
odometry_.get_commands(last_linear_velocity_, last_angular_velocity_);
odometry_.get_commands(last_linear_velocity_, last_angular_velocity_, params_.open_loop);
if (params_.front_steering)
{
for (size_t i = 0; i < params_.rear_wheels_names.size(); i++)
Expand Down
82 changes: 60 additions & 22 deletions steering_controllers_library/src/steering_odometry.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@

#include <cmath>
#include <iostream>
#include <limits>

namespace steering_odometry
{
Expand Down Expand Up @@ -128,13 +129,26 @@ bool SteeringOdometry::update_from_velocity(
return update_odometry(linear_velocity, angular_velocity, dt);
}

double SteeringOdometry::get_linear_velocity_double_traction_axle(
const double right_traction_wheel_vel, const double left_traction_wheel_vel,
const double steer_pos)
{
double turning_radius = wheelbase_ / std::tan(steer_pos);
// overdetermined, we take the average
double vel_r = right_traction_wheel_vel * wheel_radius_ * turning_radius /
(turning_radius + wheel_track_ * 0.5);
double vel_l = left_traction_wheel_vel * wheel_radius_ * turning_radius /
(turning_radius - wheel_track_ * 0.5);
return (vel_r + vel_l) * 0.5;
}

bool SteeringOdometry::update_from_velocity(
const double right_traction_wheel_vel, const double left_traction_wheel_vel,
const double steer_pos, const double dt)
{
double linear_velocity =
(right_traction_wheel_vel + left_traction_wheel_vel) * wheel_radius_ * 0.5;
steer_pos_ = steer_pos;
double linear_velocity = get_linear_velocity_double_traction_axle(
right_traction_wheel_vel, left_traction_wheel_vel, steer_pos_);

const double angular_velocity = std::tan(steer_pos_) * linear_velocity / wheelbase_;

Expand All @@ -145,10 +159,18 @@ bool SteeringOdometry::update_from_velocity(
const double right_traction_wheel_vel, const double left_traction_wheel_vel,
const double right_steer_pos, const double left_steer_pos, const double dt)
{
steer_pos_ = (right_steer_pos + left_steer_pos) * 0.5;
double linear_velocity =
(right_traction_wheel_vel + left_traction_wheel_vel) * wheel_radius_ * 0.5;
const double angular_velocity = std::tan(steer_pos_) * linear_velocity / wheelbase_;
// overdetermined, we take the average
const double right_steer_pos_est = std::atan(
wheelbase_ * std::tan(right_steer_pos) /
(wheelbase_ - wheel_track_ / 2 * std::tan(right_steer_pos)));
const double left_steer_pos_est = std::atan(
wheelbase_ * std::tan(left_steer_pos) /
(wheelbase_ + wheel_track_ / 2 * std::tan(left_steer_pos)));
steer_pos_ = (right_steer_pos_est + left_steer_pos_est) * 0.5;

double linear_velocity = get_linear_velocity_double_traction_axle(
right_traction_wheel_vel, left_traction_wheel_vel, steer_pos_);
const double angular_velocity = steer_pos_ * linear_velocity / wheelbase_;

return update_odometry(linear_velocity, angular_velocity, dt);
}
Expand Down Expand Up @@ -181,30 +203,41 @@ void SteeringOdometry::set_odometry_type(const unsigned int type) { config_type_

double SteeringOdometry::convert_twist_to_steering_angle(double v_bx, double omega_bz)
{
if (omega_bz == 0 || v_bx == 0)
if (fabs(v_bx) < std::numeric_limits<float>::epsilon())
{
return 0;
// avoid division by zero
return 0.;
}
return std::atan(omega_bz * wheelbase_ / v_bx);
}

std::tuple<std::vector<double>, std::vector<double>> SteeringOdometry::get_commands(
const double v_bx, const double omega_bz)
const double v_bx, const double omega_bz, const bool open_loop)
{
// desired wheel speed and steering angle of the middle of traction and steering axis
double Ws, phi;
double Ws, phi, phi_IK = steer_pos_;

#if 0
if (v_bx == 0 && omega_bz != 0)
{
// TODO(anyone) would be only valid if traction is on the steering axis -> tricycle_controller
// TODO(anyone) this would be only possible if traction is on the steering axis
phi = omega_bz > 0 ? M_PI_2 : -M_PI_2;
Ws = abs(omega_bz) * wheelbase_ / wheel_radius_;
}
else
{
phi = SteeringOdometry::convert_twist_to_steering_angle(v_bx, omega_bz);
Ws = v_bx / (wheel_radius_ * std::cos(steer_pos_));
// TODO(anyone) this would be valid only if traction is on the steering axis
Ws = v_bx / (wheel_radius_ * std::cos(phi_IK)); // using the measured steering angle
}
#endif
// steering angle
phi = SteeringOdometry::convert_twist_to_steering_angle(v_bx, omega_bz);
if (open_loop)
{
phi_IK = phi;
}
// wheel speed
Ws = v_bx / wheel_radius_;

if (config_type_ == BICYCLE_CONFIG)
{
Expand All @@ -216,32 +249,37 @@ std::tuple<std::vector<double>, std::vector<double>> SteeringOdometry::get_comma
{
std::vector<double> traction_commands;
std::vector<double> steering_commands;
if (fabs(steer_pos_) < 1e-6)
// double-traction axle
if (is_close_to_zero(phi_IK))
{
// avoid division by zero
traction_commands = {Ws, Ws};
}
else
{
const double turning_radius = wheelbase_ / std::tan(steer_pos_);
const double turning_radius = wheelbase_ / std::tan(phi_IK);
const double Wr = Ws * (turning_radius + wheel_track_ * 0.5) / turning_radius;
const double Wl = Ws * (turning_radius - wheel_track_ * 0.5) / turning_radius;
traction_commands = {Wr, Wl};
}
// simple steering
steering_commands = {phi};
return std::make_tuple(traction_commands, steering_commands);
}
else if (config_type_ == ACKERMANN_CONFIG)
{
std::vector<double> traction_commands;
std::vector<double> steering_commands;
if (fabs(steer_pos_) < 1e-6)
if (is_close_to_zero(phi_IK))
{
// avoid division by zero
traction_commands = {Ws, Ws};
// shortcut, no steering
steering_commands = {phi, phi};
}
else
{
const double turning_radius = wheelbase_ / std::tan(steer_pos_);
const double turning_radius = wheelbase_ / std::tan(phi_IK);
const double Wr = Ws * (turning_radius + wheel_track_ * 0.5) / turning_radius;
const double Wl = Ws * (turning_radius - wheel_track_ * 0.5) / turning_radius;
traction_commands = {Wr, Wl};
Expand Down Expand Up @@ -279,8 +317,8 @@ void SteeringOdometry::integrate_runge_kutta_2(
const double theta_mid = heading_ + omega_bz * 0.5 * dt;

// Use the intermediate values to update the state
x_ += v_bx * cos(theta_mid) * dt;
y_ += v_bx * sin(theta_mid) * dt;
x_ += v_bx * std::cos(theta_mid) * dt;
y_ += v_bx * std::sin(theta_mid) * dt;
heading_ += omega_bz * dt;
}

Expand All @@ -289,7 +327,7 @@ void SteeringOdometry::integrate_fk(const double v_bx, const double omega_bz, co
const double delta_x_b = v_bx * dt;
const double delta_theta = omega_bz * dt;

if (fabs(delta_theta) < 1e-6)
if (is_close_to_zero(delta_theta))
{
/// Runge-Kutta 2nd Order (should solve problems when omega_bz is zero):
integrate_runge_kutta_2(v_bx, omega_bz, dt);
Expand All @@ -300,8 +338,8 @@ void SteeringOdometry::integrate_fk(const double v_bx, const double omega_bz, co
const double heading_old = heading_;
const double R = delta_x_b / delta_theta;
heading_ += delta_theta;
x_ += R * (sin(heading_) - sin(heading_old));
y_ += -R * (cos(heading_) - cos(heading_old));
x_ += R * (sin(heading_) - std::sin(heading_old));
y_ += -R * (cos(heading_) - std::cos(heading_old));
}
}

Expand Down
Loading
Loading