HPIpy is a Python-based standalone package that leverages various sequence-based computational models for the prediction of protein-protein interactions (PPIs) between host and pathogen species.
Table of Contents
Various sequence-based computational approaches implemented in HPIpy:
- Interolog mapping
- Domain-based
- Phylogenetic profiling
- Gene ontology (GO) semantic similarity
HPIpy supports the following pathosystems for protein-protein interactions prediction.
Model | Host | Pathogen(s) |
---|---|---|
humanVirus |
Human | Human-related virus |
humanBacteria |
Human | Human-related bacteria |
animalPathogen |
All animals | Virus, fungi, bacteria |
plantPathogen |
All plants | Virus, fungi, bacteria |
If not installed, download and install Miniconda:
- Download the latest version from Miniconda
- To install, execute the command:
bash Miniconda3-latest-Linux-x86_64.sh
Download the HPIpy package using one of the below options (1 or 2):
- Clone this repository:
git clone https://github.com/usubioinfo/hpipy.git
- Obtain package using link:
wget https://kaabil.net/hpipy/downloads/hpipy.tar.gz
tar -xvzf hpipy.tar.gz
To create the conda environment for HPIpy:
cd hpipy
conda env create -f environment.yml
conda activate hpipy
To view the "Help" section of HPIpy, run:
python3 -m hpipy --help
Basic usage of HPIpy:
python3 -m hpipy --host exampleData/hostProteins.fasta --pathogen exampleData/pathogenProteins.fasta --computation interolog --model humanVirus
Apart from required arguments (as mentioned above), HPIpy contains several options (see package help), which can be used based on the requirement. Example for advanced analysis:
python3 -m hpipy --host exampleData/hostProteins.fasta --pathogen exampleData/pathogenProteins.fasta \
--computation interolog \
--model humanVirus \
--seq_homology 0.8 \
--num_threads 20 \
--network \
--outputdir samplePPIs \
--interIdentity 40 60 \
--interEvalue 1e-15 1e-20 \
--interCoverage 60
If you want to predict the interactions based on different parameters for prediction, use the --resume_ppis
option. The program will not run all the steps but only execute PPIs prediction step.
python3 -m hpipy --host exampleData/hostProteins.fasta --pathogen exampleData/pathogenProteins.fasta \
--computation interolog \
--model humanVirus \
--seq_homology 0.8 \
--num_threads 20 \
--network \
--outputdir samplePPIs \
--interIdentity 70 80 \
--interEvalue 1e-25 \
--resume_ppis
For any queries, contact us at [email protected].