Skip to content

usubioinfo/hpipy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HPIpy

HPIpy

HPIpy is a Python-based standalone package that leverages various sequence-based computational models for the prediction of protein-protein interactions (PPIs) between host and pathogen species.

Table of Contents

Computational approaches

Various sequence-based computational approaches implemented in HPIpy:

  • Interolog mapping
  • Domain-based
  • Phylogenetic profiling
  • Gene ontology (GO) semantic similarity

Host-pathogen interaction models

HPIpy supports the following pathosystems for protein-protein interactions prediction.

Model Host Pathogen(s)
humanVirus Human Human-related virus
humanBacteria Human Human-related bacteria
animalPathogen All animals Virus, fungi, bacteria
plantPathogen All plants Virus, fungi, bacteria

Download and Install Miniconda

If not installed, download and install Miniconda:

  • Download the latest version from Miniconda
  • To install, execute the command:
bash Miniconda3-latest-Linux-x86_64.sh

Download HPIpy

Download the HPIpy package using one of the below options (1 or 2):

  1. Clone this repository:
git clone https://github.com/usubioinfo/hpipy.git
  1. Obtain package using link:
wget https://kaabil.net/hpipy/downloads/hpipy.tar.gz
tar -xvzf hpipy.tar.gz

To create the conda environment for HPIpy:

cd hpipy
conda env create -f environment.yml
conda activate hpipy

Usage

To view the "Help" section of HPIpy, run:

python3 -m hpipy --help

Basic usage of HPIpy:

python3 -m hpipy --host exampleData/hostProteins.fasta --pathogen exampleData/pathogenProteins.fasta --computation interolog --model humanVirus

Apart from required arguments (as mentioned above), HPIpy contains several options (see package help), which can be used based on the requirement. Example for advanced analysis:

python3 -m hpipy --host exampleData/hostProteins.fasta --pathogen exampleData/pathogenProteins.fasta \
  --computation interolog \
  --model humanVirus \
  --seq_homology 0.8 \
  --num_threads 20 \
  --network \
  --outputdir samplePPIs \
  --interIdentity 40 60 \
  --interEvalue 1e-15 1e-20 \
  --interCoverage 60

If you want to predict the interactions based on different parameters for prediction, use the --resume_ppis option. The program will not run all the steps but only execute PPIs prediction step.

python3 -m hpipy --host exampleData/hostProteins.fasta --pathogen exampleData/pathogenProteins.fasta \
  --computation interolog \
  --model humanVirus \
  --seq_homology 0.8 \
  --num_threads 20 \
  --network \
  --outputdir samplePPIs \
  --interIdentity 70 80 \
  --interEvalue 1e-25 \
  --resume_ppis

Contact Us

For any queries, contact us at [email protected].

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages