-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
301 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
#!/usr/bin/env python | ||
|
||
import os | ||
import omni | ||
import logging | ||
import argparse | ||
import omnigibson as og | ||
import json | ||
|
||
from omnigibson.macros import gm | ||
from omnigibson.utils.profiling_utils import * | ||
|
||
OUTPUT_DIR = os.path.join(os.path.expanduser("~"), "Desktop") | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("-p", "--particles", action='store_true') | ||
parser.add_argument("-s", "--scenes", action='store_true') | ||
parser.add_argument("-o", "--objects", action='store_true') | ||
parser.add_argument("-r", "--robots", action='store_true') | ||
|
||
|
||
def main(): | ||
args = parser.parse_args() | ||
# Modify flatcache, pathtracing, GPU, and object state settings | ||
gm.ENABLE_FLATCACHE = False | ||
gm.ENABLE_HQ_RENDERING = False | ||
gm.ENABLE_OBJECT_STATES = True | ||
gm.ENABLE_TRANSITION_RULES = True | ||
gm.SHOW_DISCLAIMERS = False | ||
# Disable OmniGibson logging | ||
log = omni.log.get_log() | ||
log.enabled = False | ||
og.log.setLevel(logging.FATAL) | ||
|
||
env = ProfilingEnv(configs=dict(scene={"type": "Scene"}), action_timestep=1/60., physics_timestep=1/240.) | ||
env.reset() | ||
|
||
results = dict() | ||
if args.objects: | ||
results["objects"] = benchmark_objects(env) | ||
if args.robots: | ||
results["robots"] = benchmark_robots(env) | ||
if args.scenes: | ||
results["scenes"] = benchmark_scenes(env) | ||
if args.particles: | ||
results["fluids"] = benchmark_particle_system(env) | ||
|
||
with open(os.path.join(OUTPUT_DIR, "benchmark_results.json"), 'w') as f: | ||
json.dump(results, f) | ||
plot_results(results, os.path.join(OUTPUT_DIR, "omnigibson_benchmark.pdf")) | ||
og.shutdown() | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
import gym | ||
import tqdm | ||
import numpy as np | ||
import omnigibson as og | ||
import matplotlib.pyplot as plt | ||
|
||
from time import time | ||
from omnigibson import object_states | ||
from omnigibson.objects import PrimitiveObject | ||
from omnigibson.robots import REGISTERED_ROBOTS | ||
from omnigibson.utils.asset_utils import get_available_og_scenes | ||
from omnigibson.envs.env_base import Environment | ||
from omnigibson.macros import gm | ||
|
||
PROFILING_FIELDS = ["total time", "action time", "physics time", "render time", "non physics time", "get observation time", "task time"] | ||
|
||
class ProfilingEnv(Environment): | ||
def step(self, action): | ||
start = time() | ||
# If the action is not a dictionary, convert into a dictionary | ||
if not isinstance(action, dict) and not isinstance(action, gym.spaces.Dict): | ||
action_dict = dict() | ||
idx = 0 | ||
for robot in self.robots: | ||
action_dim = robot.action_dim | ||
action_dict[robot.name] = action[idx: idx + action_dim] | ||
idx += action_dim | ||
else: | ||
# Our inputted action is the action dictionary | ||
action_dict = action | ||
|
||
# Iterate over all robots and apply actions | ||
for robot in self.robots: | ||
robot.apply_action(action_dict[robot.name]) | ||
action_end = time() | ||
# Run simulation step | ||
# Possibly force playing | ||
for i in range(og.sim.n_physics_timesteps_per_render): | ||
super(type(og.sim), og.sim).step(render=False) | ||
physics_end = time() | ||
og.sim.render() | ||
render_end = time() | ||
# Additionally run non physics things if we have a valid scene | ||
if og.sim._scene is not None: | ||
og.sim._omni_update_step() | ||
if og.sim.is_playing(): | ||
og.sim._non_physics_step() | ||
if gm.ENABLE_TRANSITION_RULES: | ||
og.sim._transition_rule_step() | ||
non_physics_end = time() | ||
# Grab observations | ||
obs = self.get_obs() | ||
obs_end = time() | ||
# Grab reward, done, and info, and populate with internal info | ||
reward, done, info = self.task.step(self, action) | ||
self._populate_info(info) | ||
|
||
if done and self._automatic_reset: | ||
# Add lost observation to our information dict, and reset | ||
info["last_observation"] = obs | ||
obs = self.reset() | ||
|
||
# Increment step | ||
self._current_step += 1 | ||
end = time() | ||
ret = [end-start, action_end-start, physics_end-action_end, render_end-physics_end, \ | ||
non_physics_end-render_end, obs_end-non_physics_end, end-obs_end] | ||
if self._current_step % 100 == 0: | ||
print("total time: {:.3f} ms, action time: {:.3f} ms, physics time: {:.3f} ms, render time: {:.3f} ms, non physics time: {:.3f} ms, get obs time: {:.3f} ms, task time: {:.3f} ms".format(*ret)) | ||
return obs, reward, done, info, ret | ||
|
||
|
||
def plot_results(results_dict, output_fp): | ||
num_plots = np.sum([len(results) for results in results_dict.values()]) | ||
cur_plot = 1 | ||
plt.figure(figsize=(7, 3.5 * num_plots)) | ||
for cat, results in results_dict.items(): | ||
n_candidates = len(list(results.values())[0]) | ||
for field in results: | ||
result = [results[field][candidate][0] for candidate in results[field]] | ||
ax = plt.subplot(num_plots, 1, cur_plot) | ||
ax.set_xlabel(f"{cat}: {field}") | ||
ax.set_ylabel("time (ms)") | ||
plt.bar(range(n_candidates), result, tick_label=list(results[field].keys())) | ||
cur_plot += 1 | ||
plt.tight_layout() | ||
plt.savefig(output_fp) | ||
|
||
|
||
def benchmark_objects(env): | ||
NUM_ITER = 30 | ||
NUM_OBJECTS_PER_ITER = 10 | ||
NUM_STEP_PER_ITER = 200 | ||
|
||
og.sim.stop() | ||
env.reload({"scene": {"type": "Scene"}}) | ||
env.reset() | ||
|
||
results = {field: {} for field in PROFILING_FIELDS} | ||
for i in tqdm.trange(NUM_ITER): | ||
objs = [] | ||
cur_results = [] | ||
for j in range(NUM_OBJECTS_PER_ITER): | ||
obj = PrimitiveObject( | ||
prim_path=f"/World/obj_{i}_{j}", | ||
name=f"obj_{i}_{j}", | ||
primitive_type="Cube", | ||
) | ||
og.sim.import_object(obj) | ||
obj.set_position(np.array([i, j, 1]) * 1.2) | ||
objs.append(obj) | ||
og.sim.step() # always taks a step after importing objects | ||
for _ in range(NUM_STEP_PER_ITER): | ||
cur_result = env.step(None) | ||
cur_results.append(cur_result[4]) | ||
cur_results = np.array(cur_results) | ||
for k, field in enumerate(PROFILING_FIELDS): | ||
results[field][(i + 1) * NUM_OBJECTS_PER_ITER] = [ | ||
np.mean(cur_results[-100:, k]), np.std(cur_results[-100:, k]), np.median(cur_results[-100:, k]), np.max(cur_results[-100:, k]), np.min(cur_results[-100:, k]) | ||
] | ||
for obj in objs: | ||
obj.sleep() | ||
|
||
return results | ||
|
||
|
||
|
||
def benchmark_robots(env): | ||
NUM_STEP = 300 | ||
|
||
og.sim.stop() | ||
env.reload({"scene": {"type": "Scene"}}) | ||
env.reset() | ||
|
||
results = {field: {} for field in PROFILING_FIELDS} | ||
for robot_name, robot_cls in tqdm.tqdm(REGISTERED_ROBOTS.items()): | ||
cur_results = [] | ||
robot = robot_cls( | ||
prim_path=f"/World/{robot_name}", | ||
name=robot_name, | ||
obs_modalities=[] | ||
) | ||
og.sim.import_object(robot) | ||
og.sim.play() | ||
og.sim.step() | ||
|
||
for _ in range(NUM_STEP): | ||
cur_result = env.step(np.random.uniform(-0.1, 0.1, robot.action_dim)) | ||
cur_results.append(cur_result[4]) | ||
cur_results = np.array(cur_results) | ||
for i, field in enumerate(PROFILING_FIELDS): | ||
results[field][robot_name] = [ | ||
np.mean(cur_results[-100:, i]), np.std(cur_results[-100:, i]), np.median(cur_results[-100:, i]), np.max(cur_results[-100:, i]), np.min(cur_results[-100:, i]) | ||
] | ||
og.sim.stop() | ||
og.sim.remove_object(robot) | ||
|
||
return results | ||
|
||
|
||
|
||
def benchmark_scenes(env): | ||
NUM_STEP = 600 | ||
|
||
og.sim.stop() | ||
|
||
results = {field: {} for field in PROFILING_FIELDS} | ||
for scene_model in tqdm.tqdm(get_available_og_scenes()[12:13]): | ||
cur_results = [] | ||
env.reload({"scene": {"type": "InteractiveTraversableScene", "scene_model": scene_model}}) | ||
env.reset() | ||
|
||
for _ in range(NUM_STEP): | ||
cur_result = env.step(None) | ||
cur_results.append(cur_result[4]) | ||
cur_results = np.array(cur_results) | ||
for i, field in enumerate(PROFILING_FIELDS): | ||
results[field][scene_model] = [ | ||
np.mean(cur_results[-100:, i]), np.std(cur_results[-100:, i]), np.median(cur_results[-100:, i]), np.max(cur_results[-100:, i]), np.min(cur_results[-100:, i]) | ||
] | ||
og.sim.stop() | ||
|
||
return results | ||
|
||
|
||
def benchmark_particle_system(env): | ||
NUM_STEP = 300 | ||
|
||
og.sim.stop() | ||
|
||
cfg = {"scene": {"type": "Scene"}} | ||
|
||
def check_toggledon(obj): | ||
return obj.states[object_states.ToggledOn].get_value() | ||
|
||
# Define objects to load into the environment | ||
sink_cfg = dict( | ||
type="DatasetObject", | ||
name="sink", | ||
category="sink", | ||
model="yfaufu", | ||
scale=[0.8, 0.8, 0.8], | ||
abilities={ | ||
"toggleable": {}, | ||
"particleSource": { | ||
"conditions": { | ||
"water": [check_toggledon], # Must be toggled on for water source to be active | ||
}, | ||
"source_radius": 0.0125, | ||
"source_height": 0.05, | ||
"initial_speed": 0.0, # Water merely falls out of the spout | ||
}, | ||
"particleSink": { | ||
"conditions": { | ||
"water": None, # No conditions, always sinking nearby particles | ||
}, | ||
"sink_radius": 0.05, | ||
"sink_height": 0.05, | ||
}, | ||
}, | ||
position=[-0.7, 0, 0.56], | ||
) | ||
cfg["objects"] = [sink_cfg] | ||
env.reload(cfg) | ||
env.reset() | ||
initial_state = og.sim.dump_state() | ||
results = {field: {} for field in PROFILING_FIELDS} | ||
for cond in tqdm.tqdm([True, False]): | ||
cur_results = [] | ||
gm.ENABLE_OBJECT_STATES = cond | ||
og.sim.play() | ||
og.sim.step() | ||
|
||
for _ in range(NUM_STEP): | ||
cur_result = env.step(None) | ||
cur_results.append(cur_result[4]) | ||
cur_results = np.array(cur_results) | ||
for i, field in enumerate(PROFILING_FIELDS): | ||
results[field][cond] = [ | ||
np.mean(cur_results[-100:, i]), np.std(cur_results[-100:, i]), np.median(cur_results[-100:, i]), np.max(cur_results[-100:, i]), np.min(cur_results[-100:, i]) | ||
] | ||
og.sim.stop() | ||
og.sim.load_state(initial_state) | ||
|
||
return results | ||
|