-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
314 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
name: Benchmark | ||
|
||
on: | ||
pull_request: | ||
branches: | ||
- og-develop | ||
|
||
permissions: | ||
# deployments permission to deploy GitHub pages website | ||
deployments: write | ||
# contents permission to update benchmark contents in gh-pages branch | ||
contents: write | ||
|
||
concurrency: | ||
group: ${{ github.workflow }}-${{ github.event_name == 'pull_request' && github.head_ref || github.sha }} | ||
cancel-in-progress: true | ||
|
||
jobs: | ||
profiling: | ||
runs-on: [self-hosted, linux, gpu] | ||
container: | ||
image: stanfordvl/omnigibson-dev:latest | ||
options: --gpus=all --privileged --user=root | ||
env: | ||
DISPLAY: "" | ||
OMNIGIBSON_HEADLESS: 1 | ||
volumes: | ||
- /scr/omni-data/datasets:/data | ||
- /usr/share/vulkan/icd.d/nvidia_icd.json:/etc/vulkan/icd.d/nvidia_icd.json | ||
- /usr/share/vulkan/icd.d/nvidia_layers.json:/etc/vulkan/implicit_layer.d/nvidia_layers.json | ||
- /usr/share/glvnd/egl_vendor.d/10_nvidia.json:/usr/share/glvnd/egl_vendor.d/10_nvidia.json | ||
- /scr/omni-data/isaac-sim/cache/ov:/root/.cache/ov:rw | ||
- /scr/omni-data/isaac-sim/cache/pip:/root/.cache/pip:rw | ||
- /scr/omni-data/isaac-sim/cache/glcache:/root/.cache/nvidia/GLCache:rw | ||
- /scr/omni-data/isaac-sim/cache/computecache:/root/.nv/ComputeCache:rw | ||
- /scr/omni-data/isaac-sim/logs:/root/.nvidia-omniverse/logs:rw | ||
- /scr/omni-data/isaac-sim/config:/root/.nvidia-omniverse/config:rw | ||
- /scr/omni-data/isaac-sim/data:/root/.local/share/ov/data:rw | ||
- /scr/omni-data/isaac-sim/documents:/root/Documents:rw | ||
|
||
defaults: | ||
run: | ||
shell: micromamba run -n omnigibson /bin/bash -leo pipefail {0} | ||
|
||
steps: | ||
- name: Fix home | ||
run: echo "HOME=/root" >> $GITHUB_ENV | ||
|
||
- name: Checkout source | ||
uses: actions/checkout@v3 | ||
|
||
- name: Install dev requirements | ||
run: pip install -r requirements-dev.txt | ||
|
||
- name: Install | ||
run: pip install -e . | ||
|
||
- name: Run performance benchmark | ||
run: source /isaac-sim/setup_conda_env.sh && bash scripts/benchmark.sh | ||
|
||
- name: Store benchmark result | ||
uses: benchmark-action/github-action-benchmark@v1 | ||
with: | ||
tool: 'customSmallerIsBetter' | ||
output-file-path: output.json | ||
benchmark-data-dir-path: benchmark | ||
fail-on-alert: true | ||
alert-threshold: '200%' | ||
github-token: ${{ secrets.GITHUB_TOKEN }} | ||
comment-on-alert: true | ||
auto-push: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
import gym | ||
import omnigibson as og | ||
|
||
from time import time | ||
from omnigibson.envs.env_base import Environment | ||
|
||
PROFILING_FIELDS = ["total time", "physics time", "render time", "non physics time", "get observation time", "task time", "action time"] | ||
|
||
class ProfilingEnv(Environment): | ||
def step(self, action): | ||
start = time() | ||
# If the action is not a dictionary, convert into a dictionary | ||
if not isinstance(action, dict) and not isinstance(action, gym.spaces.Dict): | ||
action_dict = dict() | ||
idx = 0 | ||
for robot in self.robots: | ||
action_dim = robot.action_dim | ||
action_dict[robot.name] = action[idx: idx + action_dim] | ||
idx += action_dim | ||
else: | ||
# Our inputted action is the action dictionary | ||
action_dict = action | ||
|
||
# Iterate over all robots and apply actions | ||
for robot in self.robots: | ||
robot.apply_action(action_dict[robot.name]) | ||
action_end = time() | ||
# Run simulation step | ||
# Possibly force playing | ||
for i in range(og.sim.n_physics_timesteps_per_render): | ||
super(type(og.sim), og.sim).step(render=False) | ||
physics_end = time() | ||
og.sim.render() | ||
render_end = time() | ||
og.sim._non_physics_step() | ||
non_physics_end = time() | ||
# Grab observations | ||
obs = self.get_obs() | ||
obs_end = time() | ||
# Grab reward, done, and info, and populate with internal info | ||
reward, done, info = self.task.step(self, action) | ||
self._populate_info(info) | ||
|
||
if done and self._automatic_reset: | ||
# Add lost observation to our information dict, and reset | ||
info["last_observation"] = obs | ||
obs = self.reset() | ||
|
||
# Increment step | ||
self._current_step += 1 | ||
end = time() | ||
ret = [end-start, physics_end-action_end, render_end-physics_end, non_physics_end-render_end, \ | ||
obs_end-non_physics_end, end-obs_end, action_end-start] | ||
if self._current_step % 100 == 0: | ||
print("total time: {:.3f} ms, physics time: {:.3f} ms, render time: {:.3f} ms, non physics time: {:.3f} ms, get obs time: {:.3f} ms, task time: {:.3f} ms, action time: {:.3f} ms, ".format(*ret)) | ||
return obs, reward, done, info, ret |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# 1st batch: baselines | ||
python tests/benchmark/profiling.py # baseline (fastest config possible) | ||
python tests/benchmark/profiling.py -s Rs_int # for vision research | ||
python tests/benchmark/profiling.py -s Rs_int -r 1 # for basic robotics research | ||
python tests/benchmark/profiling.py -s Rs_int -r 3 # for multi-agent research | ||
|
||
# 2nd batch: compare different scenes | ||
python tests/benchmark/profiling.py -r 1 -s house_single_floor | ||
python tests/benchmark/profiling.py -r 1 -s grocery_store_cafe | ||
python tests/benchmark/profiling.py -r 1 -s Pomaria_0_garden | ||
|
||
# 3rd batch: OG non-physics features | ||
python tests/benchmark/profiling.py -r 1 -s Rs_int -w # fluids (water) | ||
python tests/benchmark/profiling.py -r 1 -s Rs_int -c # soft body (cloth) | ||
python tests/benchmark/profiling.py -r 1 -s Rs_int -p # macro particle system (diced objects) | ||
python tests/benchmark/profiling.py -r 1 -s Rs_int -w -c -p # everything |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
import os | ||
import argparse | ||
import json | ||
import omnigibson as og | ||
import numpy as np | ||
import omnigibson.utils.transform_utils as T | ||
|
||
from omnigibson.macros import gm | ||
from omnigibson.systems import get_system | ||
from omnigibson.object_states import Covered | ||
from omnigibson.utils.profiling_utils import ProfilingEnv | ||
from omnigibson.utils.constants import PrimType | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("-r", "--robot", type=int, default=0) | ||
parser.add_argument("-s", "--scene", default="") | ||
parser.add_argument("-f", "--flatcache", action='store_true') | ||
parser.add_argument("-c", "--softbody", action='store_true') | ||
parser.add_argument("-w", "--fluids", action='store_true') | ||
parser.add_argument("-p", "--macro_particle_system", action='store_true') | ||
|
||
PROFILING_FIELDS = ["Total frame time", "Physics step time", "Render step time", "Non-physics step time"] | ||
|
||
|
||
SCENE_OFFSET = { | ||
"": [0, 0], | ||
"Rs_int": [0, 0], | ||
"Pomaria_0_garden": [0.3, 0], | ||
"grocery_store_cafe": [-3.5, 3.5], | ||
"house_single_floor": [0, 0], | ||
} | ||
|
||
|
||
def main(): | ||
args = parser.parse_args() | ||
# Modify flatcache, pathtracing, GPU, and object state settings | ||
assert not (args.flatcache and args.softbody), "Flatcache cannot be used with softbody at the same time" | ||
gm.ENABLE_FLATCACHE = args.flatcache | ||
gm.ENABLE_HQ_RENDERING = args.fluids | ||
gm.ENABLE_OBJECT_STATES = True | ||
gm.ENABLE_TRANSITION_RULES = True | ||
gm.USE_GPU_DYNAMICS = True | ||
|
||
cfg = {} | ||
if args.robot > 0: | ||
cfg["robots"] = [] | ||
for i in range(args.robot): | ||
cfg["robots"].append({ | ||
"type": "Fetch", | ||
"obs_modalities": ["scan", "rgb", "depth"], | ||
"action_type": "continuous", | ||
"action_normalize": True, | ||
"position": [-1.3 + 0.75 * i + SCENE_OFFSET[args.scene][0], 0.5 + SCENE_OFFSET[args.scene][1], 0], | ||
"orientation": [0., 0., 0.7071, -0.7071] | ||
}) | ||
|
||
if args.scene: | ||
assert args.scene in SCENE_OFFSET, f"Scene {args.scene} not found in SCENE_OFFSET" | ||
cfg["scene"] = { | ||
"type": "InteractiveTraversableScene", | ||
"scene_model": args.scene, | ||
} | ||
else: | ||
cfg["scene"] = { | ||
"type": "Scene", | ||
} | ||
|
||
cfg["objects"] = [{ | ||
"type": "DatasetObject", | ||
"name": "table", | ||
"category": "breakfast_table", | ||
"model": "rjgmmy", | ||
"scale": 0.75, | ||
"position": [0.5 + SCENE_OFFSET[args.scene][0], -1 + SCENE_OFFSET[args.scene][1], 0.4], | ||
"orientation": [0., 0., 0.7071, -0.7071] | ||
}] | ||
|
||
if args.softbody: | ||
cfg["objects"].append({ | ||
"type": "DatasetObject", | ||
"name": "shirt", | ||
"category": "t_shirt", | ||
"model": "kvidcx", | ||
"prim_type": PrimType.CLOTH, | ||
"scale": 0.01, | ||
"position": [-0.4, -1, 1.5], | ||
"orientation": [0.7071, 0., 0.7071, 0.], | ||
}) | ||
|
||
cfg["objects"].extend([{ | ||
"type": "DatasetObject", | ||
"name": "apple", | ||
"category": "apple", | ||
"model": "agveuv", | ||
"scale": 1.5, | ||
"position": [0.5 + SCENE_OFFSET[args.scene][0], -1 + SCENE_OFFSET[args.scene][1], 0.6], | ||
"abilities": {"diceable": {}} if args.macro_particle_system else {} | ||
}, | ||
{ | ||
"type": "DatasetObject", | ||
"name": "knife", | ||
"category": "table_knife", | ||
"model": "lrdmpf", | ||
"scale": 2.5, | ||
"position": [0.5 + SCENE_OFFSET[args.scene][0], -1 + SCENE_OFFSET[args.scene][1], 0.8], | ||
"orientation": T.euler2quat([-np.pi / 2, 0, 0]) | ||
}]) | ||
|
||
env = ProfilingEnv(configs=cfg, action_timestep=1/60., physics_timestep=1/240.) | ||
env.reset() | ||
|
||
apple = env.scene.object_registry("name", "apple") | ||
table = env.scene.object_registry("name", "table") | ||
knife = env.scene.object_registry("name", "knife") | ||
knife.keep_still() | ||
knife.set_position_orientation( | ||
position=apple.get_position() + np.array([-0.15, 0.0, 0.2]), | ||
orientation=T.euler2quat([-np.pi / 2, 0, 0]), | ||
) | ||
if args.fluids: | ||
table.states[Covered].set_value(get_system("stain"), True) # TODO: water is buggy for now, temporarily use stain instead | ||
|
||
output, results = [], [] | ||
|
||
# Update the simulator's viewer camera's pose so it points towards the robot | ||
og.sim.viewer_camera.set_position([SCENE_OFFSET[args.scene][0], -3 + SCENE_OFFSET[args.scene][1], 1]) | ||
|
||
for i in range(500): | ||
from IPython import embed; embed() | ||
|
||
if args.robot: | ||
result = env.step(np.array([np.random.uniform(-0.3, 0.3, env.robots[i].action_dim) for i in range(args.robot)]).flatten())[4][:4] | ||
else: | ||
result = env.step(None)[4][:4] | ||
results.append(result) | ||
|
||
results = np.array(results) | ||
for i, title in enumerate(PROFILING_FIELDS): | ||
field = f"{args.scene}" if args.scene else "Empty scene" | ||
if args.robot: | ||
field += f", with {args.robot} Fetch" | ||
if args.softbody: | ||
field += ", cloth" | ||
if args.fluids: | ||
field += ", fluids" | ||
if args.macro_particle_system: | ||
field += ", macro particles" | ||
if args.flatcache: | ||
field += ", flatcache on" | ||
output.append({ | ||
"name": field, | ||
"unit": "fps", | ||
"value": np.mean(results[-300:, i]) * 1000, | ||
"extra": [title, title] | ||
}) | ||
|
||
ret = [] | ||
if os.path.exists("output.json"): | ||
with open("output.json", "r") as f: | ||
ret = json.load(f) | ||
ret.extend(output) | ||
with open("output.json", "w") as f: | ||
json.dump(ret, f) | ||
og.shutdown() | ||
|
||
if __name__ == "__main__": | ||
main() |